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Compact Riemann surfaces and Bely̆ı functions

Riemann surfaces and algebraic curves

Bernhard Riemann already knew the following

Theorem
The categories “compact Riemann surfaces” and “smooth complex
projective algebraic curves” are equivalent.

He did not say that in this manner, of course, and he had no proof we
would completely accept. Moreover, even nowadays it is difficult to make
this equivalence explicit.

For example: can we give function theoretic conditions under which a
compact Riemann surface X can be defined — as an algebraic curve —
by polynomial equations with coefficients in Q ? Or in short,
can we see somehow that X is defined over a number field ?
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Compact Riemann surfaces and Bely̆ı functions

Bely̆ı’s contribution

Yes, we can! In 1979, Bely̆ı proved the

Theorem
The smooth algebraic curve X can be defined over a number field ⇐⇒
There is a nonconstant meromorphic function β : X→ Ĉ = P1(C)
ramified above at most three points.

We call functions of this kind Bely̆ı functions, and by a Möbius
transformation we can always assume the critical values to be 0, 1,∞ .

Easy examples of Bely̆ı functions are

β(z) := zm on the Riemann sphere ,

β(x : y : z) := xn/zn on the Fermat curve xn + yn = zn .
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Compact Riemann surfaces and Bely̆ı functions

The proof for “ =⇒ ”
consists of a tricky algorithm. If X is given by the zeros of polynomials
with coefficients in Q as e.g. y2 = x(x − 1)(x − 1

3√2
) (real 3rd root)

start with a nontrivial projection X→ Ĉ , here e.g. f0 : (x , y) 7→ x ,
obviously ramified above algebraic points, here x = 0, 1,∞, 1

3√2
,

then apply polynomials ∈ Q[x ] sending these critical points to Q and
having themselves critical values of smaller degree, here f1 : x 7→ x3 ,
repeat this procedure until all critical values of fn ◦ . . . ◦ f1 ◦ f0 are in
Q. Here, f1 ◦ f0 is already ramified over only 0, 1,∞, 1

2 .
Invent some miracle polynomials decreasing the number of critical
(now rational) values step by step until you have only three of them.
In our case, already f2 : u 7→ 4u(1− u) will do the job!

In our case, the resulting Bely̆ı function is therefore

β = f2 ◦ f1 ◦ f0 : (x , y) 7→ 4x3(1− x3) .
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Bely̆ı functions and dessins

Visualization via dessins
Grothendieck observed in his Esquisse d’un programme (1984, not
published until 1997 !) that the topological behaviour of the Belyi
functions can be visualized using (hyper)maps in Walsh representation: the
inverse images β−1[0, 1] of the real 0 1 –interval ◦——• is a bipartite
graph, embedded in the Riemann surface X , i.e. cutting the surface into
simply connected cells.

For β : Ĉ→ Ĉ , β(z) := z6 or (z−1)2
−4z or 4z(1− z) , β−1[0, 1] looks as

follows.
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Bely̆ı functions and dessins

A dessin on a genus 1 curve

for our example y2 = x(x − 1)(x − 1
3√2

) with Bely̆ı function

β(x , y) = 4x3(1− x3) , drawn on the fundamental parallelogram of its
covering group, looks like
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Bely̆ı functions and dessins

A Fermat curve
For the genus 3 Fermat curve of exponent 4 , the dessin for
β(x : y : z) = x4/z4 can be drawn on the fundamental domain of its
universal covering group as
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Bely̆ı functions and dessins

Why so beautiful?

The drawing shows the fundamental domain of its universal covering group,
acting on the hyperbolic plane. The numbers on the border indicate the
necessary identifications to get the surface. Observe that

we have 4 cells,
the cell midpoints are the poles of β ,
the underlying graph is K4,4 ,
the valencies of the white vertices are the zero orders of β ,
the edges are parts of geodesics.

Another very beautiful dessin in genus 3 lives on
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Triangle groups and regularity

Klein’s quartic
whose equation can be written as x3y + y3z + z3x = 0
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Triangle groups and regularity

A tesselation
of the fundamental domain of Klein’s quartic by fundamental domains of
the triangle group 〈2, 3, 7〉 explains why the dessin looks so nice.
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Triangle groups and regularity

The role of the j–function

Suppose the compact Riemann surface X can be written as the quotient
Γ\H of the upper half plane H by some subgroup Γ of a triangle group
∆ = 〈p, q, r〉 . There is a ∆–automorphic function j : H→ Ĉ (which can
be explicitly constructed by means of hypergeometric functions)

sending each white (open) triangle onto H ,
each black triangle onto −H ,
the skeleton of the tesselation onto R ∪ {∞} ,
the fixed points of ∆ (vertices of the tesselation) onto 0, 1,∞ with
orders p, q, r ,
and locally biholomorphic outside these fixed points,
providing an identification ∆\H ∼= Ĉ by ∆z 7→ j(z)

and a canonical Bely̆ı function
β : X→ Ĉ : Γ\H→ ∆\H : Γz 7→ j(z)↔ ∆z .
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Triangle groups and regularity

Bely̆ı functions and uniformization

This is already one direction of

Theorem
There is a Bely̆ı function on the compact Riemann surface X if and only if
X can be written as Γ\H for a finite index subgroup Γ < ∆ of a Fuchsian
triangle group ∆ .

For the other direction, let β be a Bely̆ı function on X and choose
∆ = 〈p, q, r〉 such that p is a common multiple of all zero orders of β , r is
a common multiple of all pole orders, and q is a common multiple of all
zero orders of β − 1 . If j is the ∆–automorphic function introduced above,

β−1 ◦ j : H→ X

can be well defined and gives a covering map (ramified in general) with
covering group Γ < ∆ .
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Triangle groups and regularity

The benefits of regularity

Most examples presented here are (orientably) regular dessins: there is an
(orientation preserving) automorphism group of the hypermap
(and of the Riemann surface!) acting transitively on the set of edges.
Important because

every dessin is a quotient of a regular one,
their Bely̆ı functions define normal coverings X→ P1(C) ,
their Riemann surfaces X are quasiplatonic
corresponding to very special points in their moduli spaces,
whose universal covering groups Γ are normal subgroups of a triangle
group ∆ ,
whose quotient mappings X→ (AutX)\X are Bely̆ı functions
(if g > 1 ; for g = 1 , AutX is infinite!).
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Triangle groups and regularity

Break

Coffee now!
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Galois action

Coffee over, now the “⇐= ” part of Bely̆ı’s theorem

Theorem
Let X be a Bely̆ı surface, i.e. a compact Riemann surface with a Bely̆ı
function β . Then, as an algebraic curve, X can be defined over a
number field, and so can β .

Bely̆ı attributes this part to A. Weil. (??)

Let GalC be the group of field automorphisms of C . Caution: C/Q is
not an algebraic extension, so there is no Galois correspondence available.
Let σ ∈ GalC act on the points of the smooth algebraic curve X
(acting on their coordinates), on its defining polynomials
(acting on their coefficients) and on β (acting on its coefficients).
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Galois action

The effect of Galois conjugation, an example:
Take the curve y2 = x(x − 1)(x − 1

3√2
) (real 3rd root) with Bely̆ı function

β(x , y) := 4x3(1− x3)

and its Galois conjugate under σ : 3
√
2 7→ e−2πi/3 3

√
2 . Then – up to

homeomorphism – the two dessins look as follows (opposite sides have to
be identified to get a torus).
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Galois action

Galois invariants

the resulting set Xσ is again a smooth algebraic curve and
the resulting morphism βσ : Xσ → P1(C) is a Bely̆ı function,
hence defining an action D 7→ Dσ on the set of all dessins.

Moreover, the following data remain invariant.

The list of valencies of white vertices = zero orders of β,
the list of valencies of black vertices = zero orders of β − 1,
the list of valencies of faces,
the number of edges = degree of β,
the genus of X,
the automorphism group (preserving orientation, and up to ∼= ),
regularity.
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Galois action

The moduli field

For a given data configuration consisting of genus, number of edges and
list of vertex valencies, there exist only a finite number of dessins. Since
dessins determine uniquely the conformal structure of X (remember David
Singerman’s talk!),

U(X) := {σ ∈ GalC | X ∼= Xσ}

has finite index in GalC . Its fixed field M(X) , the moduli field of X , is
therefore a number field.

Easy: every field of definition for X , i.e. containing all coefficients of the
defining polynomials for (a model of) X contains the moduli field.

Is the moduli field itself a field of definition?
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Galois action

No,

there are counterexamples due to Earle, Shimura, Dèbes/Emsalem.

On the other hand, based on a criterion due to A. Weil and work of many
people (Coombes/Harbater, Wolfart, Koeck, Hammer/Herrlich,
G. González) we have

Theorem
The moduli field M(X) is a field of definition for X if

g = 0
g = 1
AutX is trivial
X is quasiplatonic.

X can always be defined over a finite extension of M(X) .
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Galois action

Galois actions on quasiplatonic surfaces

Almost obvious:

If a regular dessin is uniquely determined (up to isomorphism) by its type
(p, q, r) and its automorphism group, its underlying quasiplatonic surface is
definable over the rationals.

This does not mean that we can write down the equations!

This argument applies to many cases:
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Galois action

“Low” genera regular dessins

Theorem (Conder/Jones/Streit/Wolfart 2013)
1 All quasiplatonic surfaces in genera 1 < g < 7 can be defined over Q .
2 Most quasiplatonic surfaces in genera 7 ≤ g ≤ 18 can be defined over

Q up to 21 pairs defined over quadratic number fields (which can be
explicitly determined) and

3 one Galois orbit of length 4 in genus 12 of signature (2, 5, 10)
(graph K11), automorphism group of order 110 and minimal field
of definition Q(ζ5) ,

4 one Galois orbit of length 3 in genus 14 of type (2, 3, 7) and
automorphism group PSL2F13 (third Macbeath–Hurwitz group),
defined over Q(cos 2π

7 ) .
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Galois action

Remarks and questions
The theorem gives a wrong impression concerning the
long–range–behaviour: a recent result of González–Diez and
Jaikin–Zapirain shows that the absolute Galois group acts
faithfully on the set of all quasiplatonic surfaces.

The situation is slightly more complicated for the regular dessins (i.e. for
their Bely̆ı functions) than for their underlying quasiplatonic surfaces. As
an example, take the Fricke–Macbeath curve of genus 7 with its maximal
dessin of type (2, 3, 7) and automorphism group PSL2F8 of order 504 . It
is definable over Q , but it has two (non–isomorphic) dessins of type
(2, 7, 7) (the chiral pair of the Edmonds maps, regular embeddings of K8 )
whose Bely̆ı functions are defined over Q(

√
−7) .

Needed: a more complete list of Galois invariants for dessins and a better
understanding of the link between Galois action and (hyper)map operations.

Let’s hope that the next talk reveals some secrets about this link!
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