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Euclidean space as consisting of polyhedral cells, all alike such that each rotation 
that is the symmetry operation of a cell is also a symmetry operation of the whole 
configuration.  
 
 
Twisted honeycomb – an abstract object of rank 4 that “inherits” all the rotations  
of the polyhedral cells of a honeycomb but is not symmetrical by a reflection. 
 
 
Chiral polytope – an abstract object of any rank that is maximally symmetric by 
rotations, but never by a reflection. 
 
 
Geometrically chiral polytope – is invariant under geometric rotations but not  
under hyperplane reflections. More precisely, 
 
 
Geometrically regular polytope is the polytope whose symmetry group (the group  
of isometries keeping the polytope invariant) is flag transitive while the group of a 
geometrically chiral polytope has two orbits on the flags with the adjacent flags 
always being in distinct orbits. 
 
 



 
GEOMETRIC CHIRALITY: 
 
RANK 2   
 
There are no chiral polygons – all are geometrically regular. 
 
 
   
 
 
 
 
  



 
RANK 3 
 
 
McMullen (1967) There are no convex chiral polyhedra. 
 
 
Schulte (2004-2005) There are no finite chiral polyhedra in Euclidean space. 
Infinite chiral polyhedra can be classified in six families; three families have  
finite faces and three have infinite faces. 
 
 
Pellicer & Weiss (2010) Chiral polyhedra with finite faces are combinatorially  
chiral and the others are only geometrically chiral. 
 
  



 
 
 
Abstractly (and geometrically)   Abstractly regular,  
chiral:        geometrically chiral: 
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RANK 4 
 
Bracho, Hubard & Pellicer (2013) Found an abstractly regular but geometrically 
chiral rank 4 polytope of type 8,3,3{ } in Euclidean 4-space, disproving McMullen’s 
conjecture that such do not exist. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The 1-skeleton of the polytope is the 1-skeleton of the hemi 4-cube in the  
projective space. The 2-faces are 4-gonal Petrie polygons, which lift to helical  
8-gons when taking the double cover to the 3-sphere; the 3-faces are chiral 
realizations of the cube which lift to the 3-sphere as chiral realizations of  
double covers of the cube with type 8,3{ }. 



ABSTRACT CHIRALITY: 
 
 
RANK 3 
 
 
Coxeter (1948)  
Classified regular and chiral maps on torus. 
 
Garbe (1969)   
There are no chiral maps on surfaces of genus 2, 3, 4, 5 or 6. 
 
Heffter (1898)   
Family of chiral maps of type 2k −1, 2k −1{ } for k > 2 .   
 
Edmonds (196?)  
Rediscovers Heffter’s map of type 7, 7{ } (on a surface of genus 8).  
 
Sherk (1962)   
Family chiral maps of type 6, 6{ } (smallest member on a surface of genus 7). 
…. 
 
Conder (2001 - )  
Lists of chiral maps by type, by genus and “size”… 



 
RANK 4 
 
 
 
Coxeter (1970)  
Twisted Honeycombs. 
 
Weber & Seifert (1933)  
Two examples in rank 4; both with one polyhedral cell! 
 
Colbourne & Weiss (1984)  
Census of locally toroidal rank 4 polystroma. 
 
Monson, Schulte & Weiss (1994 - 2005)  
Construct number of families in rank 4. 
 
 
 
  



ARBITRARY RANK  
 
 
 
Schulte & Weiss (1991)  
Basic structure theory of chiral polytopes. 
 
Schulte & Weiss (1995)  
Universal extension theorem for chiral polytopes with regular facets,  
leading to first examples in rank 5. 
 
Conder, Hubard & Pisanski (2008)  
First examples of finite chiral polytopes of rank >  4. 
 
Pellicer (2010)  
Constructs chiral polytopes of arbitrary rank. 
 
Hartley, Hubard & Leemans (2011) 
Two atlases of abstract chiral polytopes for small groups. 
 
 
 
PS My apologies for omissions!  



An (ABSTRACT) polytope P of rank n, or an n-polytope, is a poset, whose  
elements are called faces, with strictly monotone rank function with range 
 −1,0,1,…,n{ }  satisfying the following properties: 
 
 
§ P has a unique minimal face F−1 and a unique 

maximal face Fn . 
 
§ The maximal chains called flags of P contain 

exactly n+ 2  faces.  
 
§ P is strongly flag connected.  
 
§ P satisfies a homogeneity property (diamond 

condition).  
 
 
Sections  F /G := H ∈P G ≤ H ≤ F{ } of polytope P  
are polytopes and   rank(F /G) = rank(F)− rank(G) + 1. 
Section Fn / F0  is called a vertex figure of P at F0 . 
 
Aut(P)  = group of all automorphisms (order preserving bijections) 
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A polytope P is said to be regular if its group of automorphisms Aut(P) is transitive 
on the flags. 
 
 
 
 

 
 

 
      ⇒  Aut(P) is generated by involutions. 
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If P is of rank n, the generators  ρ0,,ρn−1 of Aut(P)  satisfy the relations implicit  
in the  C −  diagram 
 

 
 
 
 
 
and P  is said to have (Schläfli) type  p1, p2 ,, pn−1{ } .  
 
 
 
 
Furthermore, Aut(P)  satisfies an intersection condition (IP ): 
 
 

 ρi i ∈I  ρi i ∈J = ρi i ∈I  J , I , J ⊆ 0,,n −1{ }.  
 

 
 
 
Schulte (1982): Given such group, called string −group, one can construct a 
regular abstract polytope having this group as its automorphism group. 
 
  

C

ρn-1ρn-2ρ1 ρ2ρ0

pn-1p2p1



An example of a rank 3 regular abstract polytope of Schläfli type {4,4} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



A polytope P is said to be chiral if its group Aut(P) has exactly two orbits on the 
flags, with adjacent flags in distinct orbits.  
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
The group of automorphisms of a chiral n-polytope is generated by “rotations” 
 σ1,,σ n−1 of periods  p1,, pn−1  respectively, with the property that  
 

 σ iσ i+1σ j( )2 = 1 for 1≤ i < j ≤ n −1. 
 
⇒ Chiral polytope can also be assigned a (Schläfli) type  p1,…, pn−1{ }. 
 



We can represent such groups by the following diagram 
 
 
 
 
 
P also satisfies an intersection condition (IP+), which for rank 3 can be written as 
 

 

σ1 ∩ σ 2 = 1{ } = σ 2 ∩ σ 3 ,

σ1,σ 2 ∩ σ 2,σ 3 = σ 2

 

 
and for higher rank can be stated inductively as follows. The group  σ1,,σ n−1   
has the intersection property if  σ1,,σ n−2  has the intersection property and if 
 

 σ1,,σ n−2  σ i ,,σ n−1 = σ i ,,σ n−2   for  i = 2,,n −1. 
 
Schulte & Weiss (1991): Given such group, which we shall call string C+ −group, 
one can construct an abstract polytope, which is regular whenever there exists  
an automorphism ρ  such that 
 

σ1
ρ =σ1

−1, σ 2
ρ =σ 2

−1, σ 3
ρ =σ 2

2σ 3, σ i
ρ =σ i   for  i = 4,,n −1, 

 
and chiral otherwise.  

pn-1p2p1



In extending the definition of chirality to thin geometries it is more convenient to, 
instead of the above generators, use the following set of (independent) generators: 
 

α1 =σ1
−1, α2 =σ 2,    and   α i =σ 2σ 3σ i    for 2 ≤ i ≤ n −1.  

 
 
To these groups we can then conveniently associate B −diagram:  the complete 
graph on set of vertices labeled by  α0 = 1,α1,,αn−1 and set of edges labeled by 
ο α i

−1α j( ) = ο α j
−1α i( ) = ο α iα j

−1( )  with the convention of dropping an edge if its label  
is 2  and dropping the label if it is 3. 
 
 
 
 
 
 
 
 
The condition on regularity with these generators requires the existence of an 
automorphism ρ  such that 

α i
ρ =α i

−1  for  i = 1,,n −1.  

αn-2 αn-1α2α0=1α1

pn-1p2p1



 
An incidence system Γ := X,*,t, I( )  is a 4-tuple such that 

• X  is a set whose elements are called elements of Γ ; 
• I   is a set whose elements are called the types of Γ ; 
• t :X→ I  is a type function, associating to each element its type t x( ) ; 
• *  is an incidence relation. 
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A geometry  is a called thin if for each i ∈I  every flag of type  is contained  
in exactly two chambers of . 
 
Polytopes and non-degenerate hypermaps are examples of thin geometries. 
 
 
A hypertope is defined to be a thin incidence geometry that is strongly chamber-
connected (SCC) (or, residually connected as commonly used in the terminology  
of incidence geometries). 
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An automorphism of Γ := X,*,t, I( ) is a mapping α :X→ X  such that for all x, y∈X   
• α   is a bijection on X  (inducing a bijection on I ); 
• x* y if and only if α x( )*α y( ); 
• t x( ) = t y( ) if and only if t α x( )( ) = t α y( )( ) . 

 
The set of all automorphism of Γ is denoted by Aut Γ( ). An automorphism is type 
preserving when for each x ∈X , t α x( )( ) = t x( ). The set of all type preserving 
automorphism of Γ is denoted by Aut I Γ( ). 
 
A thin geometry Γ  is flag-transitive if Aut I Γ( ) is transitive on all flags of a  
given type J  for each J ⊆ I ;  is chamber-transitive if Aut  is transitive on  
all chambers of . In fact, these two conditions are equivalent for incidence 
geometries. 
 
 
A hypertope (that is a thin, SCC incidence geometry) Γ  is said to be  
 
• regular if Aut I Γ( ) has one orbit on the chambers of Γ ; 
• chiral if Aut I Γ( ) has two orbits on the chambers of Γ  such that any two 

adjacent chambers lie in distinct orbits. 
 
 

Γ I Γ( )
Γ



 
Let Γ  be a regular hypertope and φ  one of its chambers. Then for each i ∈I  there 
exists an involutory automorphism ρi  that interchanges φ  with its i −adjacent 
chamber φ i . The group of automorphisms Aut I Γ( ) is then generated by 
distinguished generators  ρ0,,ρr−1{ }, where r = I , which satisfy the intersection 
condition IP   
 

  
 

 Furthermore, Aut I Γ( )  satisfies the relations implicit in the C −diagram, the  
complete graph on r  vertices whose vertices labeled by the  ρ0,,ρr−1 and edges  
ρiρ j  with o(ρiρ j ) . 
 
 
Example:  

 ρi i ∈I  ρi i ∈J = ρi i ∈I  J , I , J ⊆ 0,,n −1{ }.

ρ2

ρ0ρ0 ρ1

ρ1

6

ρ0 ρ2ρ1



 
(3,3,3) 

  
 
 
 
 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
  



Similarly, if Γ  is a chiral hypertope and φ  one of its chambers, then for each pair 

i, j ∈I , i ≠ j,  there exists an automorphism σ ij  mapping the flag φ  to . 
We define the distinguished generators: 
 

α0 = 1, α1 =σ10 , α2 =σ12 ,  α i =σ12σ i−1, i    for  i = 3,,r −1. 
 

With so generated Aut I Γ( )  we can associate a B −diagram, the complete graph on  
r  vertices labeled by  α0,,α r−1 and edges labeled by o(α i

−1α j ) which must satisfy 
the intersection condition IP+   
 

 α i
−1α j i, j ∈I  α i

−1α j i, j ∈J = α i
−1α j i, j ∈I  J  

 
for all  I , J ⊆ 0,,r −1{ } with I , J ≥ 2 . 

 
 

Example:  
 
 
  B −diagram of a chiral hypermap  (3,3,3)   

φ i( ) j

α0=1

α1

α2



REVERSING THE CONSTRUCTION 
 
Starting from a group and some of its subgroups construct an incidence system: 
 
 
Tits (1961) Let n  be a positive integer,  I = 1,,n{ }, G  a group and Gi( )i∈I  a family  
of subgroups of G . Define  

• X  to be the set of all cosets Gig, g∈G, i ∈I ; 
• t :X→ I  such that t(Gig) = i   
• Gig1 *Gjg2  if and only iff  Gi Gj ≠ ∅   

Then  
    Γ := X,*,t, I( ) is an incidence system having a chamber; 
    G  acts by right multiplication as an automorphism group on Γ ; 
    G  is transitive on flags of rank less than 3. 
 
When the above construction gives us a geometry we denote it by Γ G, Gi( )i∈I( )  
and call it a coset geometry. 
 
When the kernel K , under the action of G  on Γ  (the largest normal subgroup of  
G  contained in every Gi ) is the identity we say that G  acts faithfully on Γ . If  G   
acts faithfully on Γ  and is transitive on chambers we say that Γ  is regular. 



A pair G,S( ) such that G  is a group and  S := ρ0,,ρr−1{ } its generating set of 
involutions which satisfies the condition IP  is called a C −  group. With each C −
group we associate a C −diagram which need not be linear and which we view  
as a complete graph on r  vertices. 
 
Theorem (Rank 3): Let G, ρ0, ρ1, ρ2{ }( )  be a C −  group of rank tree. Then the  

coset geometry Γ G; ρ1,ρ2 , ρ0,ρ2 , ρ0,ρ1( )( ) is thin if and only if it is regular. 
Moreover, if it is thin (or regular) it is strongly chamber-connected. 
 
Example: The C −group of order 18  given by the following relations  
 
 
         
         + ρ0ρ1ρ2( )2 = 1  
 
 
 
 
is the automorphism group of the hypermap 6,3{ }2 . However, the implied coset 
geometry is a K3,3,3  and hence G  cannot be flag transitive on Γ  which has 27  
chambers. In this case Γ  is not thin, but it is SCC. 
 

ρ0

ρ2

ρ1



Remark: Unfortunately, in higher ranks even thinness need not suffice!  
 
Example: 
 
 
       Is a C −  group, but the coset geometry it gives is  
       not thin, it is not SCC, nor flag-transitive. 
 
 
 
Theorem: Let  G,S = ρ0, ρ1,,ρr−1{ }( ) be a C −  group of rank r  and let 

Γ := Γ G; Gi( )i∈I( ) with Gi := ρ j ρ j ∈S, j ∈I \ i{ }  for all  i ∈I := 0,,r −1{ }. If Γ  is  
flag-transitive, then Γ  is a regular hypertope. 
 
 
  

ρ3ρ1 ρ2ρ0

6

ρ3

ρ1

ρ1ρ0 ρ0

ρ2

5 4

A5

A5

S4

S4



 
Similarly, starting with G+ ,R( ), where G+  is a group with a set of independent 
generators  R := α1,,α r−1{ } satisfying the condition IP+  we can construct the  
coset geometry  

 
Γ G+ ,R( ) := Γ G+ , Gi( )i∈ 0,,r−1{ }( ) 

 
where Gi := α j j ≠ i  for  i = 1,,r −1 and G0 := α1

−1α j j ≥ 2 . 
 
 
 
Theorem: Let 

 
Γ = Γ G+ ,R( ) := Γ G+ , Gi( )i∈ 0,,r−1{ }( ) be coset geometry constructed  

from G+  and a set of independent relations  R := α1,,α r−1{ }. If Γ  is a hypertope 

(that is, thin and SCC) it is chiral if and only if there is no automorphism of G+   
that inverts all elements of R .  
 
 
  



Examples:  
 
The group G+ , denoted by , and given by the B −diagram 
 
 
            
 
 
 
 
 
is an infinite group with the following defining relations: 
 

α1
3 =α2

3 =α 3
3 = 1,

α2α1
−1( )3 = α2α 3

−1( )2 = α 3α1
−1( )2 = 1. 

 
 
 
 
 
 
 
 

3,3,3;3( )+

α3

α2

α1

α0=1



p

α3α2α1 α0=1

6

The addition of α2α1( )b = α1α2( )c  to the relations in the B −diagram 
 
 
 
 
gives a finite group whenever b + c ≤ 5 . In each case it is a C+ −group and the 
induced coset geometry Γ  is (thin, SCC) a regular or a chiral hypertope: 
 
 
 
 
 
 
 
 
 
  



Similarly, for each p = 3,4,5  and 6  from the groups 3,3,3; p( )  and 3,3,3; p( )+ ,  
which can be seen as the subgroups of the symmetry groups of 3−dimensional 
hyperbolic honeycombs 6, 3, p[ ], one can construct “locally toroidal” regular and 
chiral hypertopes by addition of appropriate relations. 
 
 
Here the B −diagram for 3,3,3; p( )+  is 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

p



 
Furthermore, regular and chiral hypertopes with the B −diagram  
 
 
 
 
 
 
 
for the group 2,4,4; p( )+  are derived with and p = 3 and 4.  
 
 
Regular hypertopes exist in each rank: Examples are obtained from the symmetric 
group Sn+1 together with its generating transpositions δ i = i n +1( ) for  i = 1,…,n . Its 
Coxeter diagram is the complete graph on n  vertices and unlabeled edges, that is  
δ iδ j( )3 = 1 whenever i ≠ j , and additional relations δ iδ jδ kδ j( )2 = 1 for all i, j,k   

such that i ≠ j ≠ k ≠ i . 
 
 
      S4 :   

4

4
p

2 δ2

δ3

δ1



  
 
 
 
 
 
 

        Thank you ! 
 
 

 
 

Carbon (chiral) nanotube                                                                      
An equivelar non-regular map on a torus      


