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Graph symmetry and hamiltonicity

Question (Lovász, 1969)

Does every connected vertex-transitive graph have a Hamilton path, i. e.,
a simple path going through all vertices?

Only 5 connected v-t graphs with no Hamilton cycle are known.

None of them is a Cayley graph.

Conjecture (Folklore)

Every Cayley graph (of order ≥ 3) has a Hamilton cycle.

Counter-Conjecture (Babai, 1995)

For some c > 0, there are infinitely many vertex-transitive graphs G ,
even Cayley graphs, without cycles of length > (1− c)|G |.

Martin Škoviera (Bratislava) Hamilton cycles 07/07/2014 2 / 31



Graph symmetry and hamiltonicity

Question (Lovász, 1969)

Does every connected vertex-transitive graph have a Hamilton path, i. e.,
a simple path going through all vertices?

Only 5 connected v-t graphs with no Hamilton cycle are known.

None of them is a Cayley graph.

Conjecture (Folklore)

Every Cayley graph (of order ≥ 3) has a Hamilton cycle.

Counter-Conjecture (Babai, 1995)

For some c > 0, there are infinitely many vertex-transitive graphs G ,
even Cayley graphs, without cycles of length > (1− c)|G |.
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Hamilton cycles in cubic Cayley graphs

Let H = 〈r , l〉 be a (2, 3, s)-presented finite group; i.e.,
r s = l2 = (rl)3 = 1.

Then H is a finite quotient of the modular group PSL(2,Z).

Theorem (Glover & Marušič, 2009)

Let K = Cay(H; r , r−1, l) be a cubic Cayley graph, where
H = 〈r , l | r s = l2 = (rl)3 = 1, . . . 〉 is a finite quotient
of the modular group PSL(2,Z). Then K has a Hamilton path. Moreover,

if |H| ≡ 2 (mod 4), then K has a Hamilton cycle

if |H| ≡ 0 (mod 4), then K has a cycle through all but two adjacent
vertices.
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Proof I: Cayley map and the corresponding triangulation

l

r
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Proof II: How to find a Hamilton cycle
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Proof II: How to find a Hamilton cycle

We construct a Hamilton cycle in CM as ∂(
⋃
F) of a set F

of red-blue hexagonal faces of CM.

The boundary must be connected and must cover all vertices.

To cover all the vertices, the complementary set of hexagons must be
‘independent’.

To get a connected boundary,
⋃
F must be connected and

homologically trivial, i.e., a ‘tree’ of faces.
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Proof III: Dual of the triangulation

hexagonal faces of CM ←→ faces of the triangulation T
←→ vertices of the underlying cubic graph G ∗ of the dual map T ∗

In other words:

We need to find a partition of V (G ∗) into two sets A and J,
where A induces a tree and J is independent.
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Proof IV: Symmetry and vertex-partitions in cubic graphs

Theorem 1 (Nedela & S., 1995)

The cyclic connectivity of a cubic vertex-transitive graph equals the length
of a shortest cycle.

Theorem 2 (Payan & Sakarovitch, 1975)

Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then
the following hold:

(i) If n ≡ 2 (mod 4), then V (G ) has a partition {A, J} where A induces
a tree and J is independent.

(ii) If n ≡ 0 (mod 4), then V (G ) has a partition {A, J} where
either A induces a tree and J induces a graph with a single edge,
or A induces a forest with two components and J is independent.

Symmetry is only used to derive cyclic connectivity ≥ 4 (or ≥ 6) (!!)

How far from symmetry can we go?
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Example: Construction of a Hamilton cycle in t(T )
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Martin Škoviera (Bratislava) Hamilton cycles 07/07/2014 11 / 31



Example: Construction of a Hamilton cycle in t(T )
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Example: Construction of a Hamilton cycle in t(T )
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Example: The required Hamilton cycle
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When does such a structure exist?
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Maximum genus of a graph

Definition. The maximum genus γM(G ) of a graph is the largest genus of
an orientable surface in which G has a cellular embedding.

By Euler-Poincaré Equation, γM(G ) ≤ bβ(G )/2c
where β(G ) = |E | − |V |+ 1 is the Betti number of G .

Definition. A graph G is upper-embeddable if γM(G ) = bβ(G )/2c;
equivalently, if it has an embedding with one or two faces.
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Upper-embeddable graphs

Theorem (Jungerman, 1978, Xuong, 1979; Nebeský, 1981)

The following statements are equivalent for every connected graph G:

(i) G is upper-embeddable.

(ii) G has a spanning T such that G − E (T ) has at most one component
of odd size.

(iii) ob(G − A) ≤ |A|+ 1 each A ⊆ E (G ).

ob denotes the number of edge-blocks with odd Betti number

Two types of upper-embeddable cubic graphs

one-face embeddable ⇐⇒ n ≡ 2 (mod 4)
⇐⇒ all Xuong cotree components are even

two-face embeddable ⇐⇒ n ≡ 0 (mod 4)
⇐⇒ one Xuong cotree component is odd
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Upper-embeddable cubic graphs: even case

Theorem (K., N. & S., 2014+)

The following are equivalent for every connected cubic graph G .

(i) G one-face-embeddable.

(ii) V (G ) has a partition {A, J} where A induces a tree and J is
independent.

Corollary

Let T be a triangulation of a closed surface by f triangles. If the
underlying graph of T ∗ is upper-embeddable and f ≡ 2 (mod 4),
then the truncation t(T ) has a Hamilton cycle.
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Interesting example
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Upper-embeddable cubic graphs: odd case

Theorem (K., N. & S., 2014+)

The following are equivalent for every connected cubic graph G .

(i) G is two-face-embeddable.

(ii) V (G ) has a partition {A, J} where either

• A induces a tree and J is near-independent, or
• A induces a forest with two components and J is independent.

Corollary

Let T be a triangulation of a closed surface by f triangles. If the
underlying graph of T ∗ is upper-embeddable and f ≡ 0 (mod 4),
then the truncation t(T ) has a Hamilton path.
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Ample upper-embeddability

Definition.
1. A cubic graph G is amply upper-embeddable if

(1) G is upper-embeddable

(2) G − {x , y} remains upper-embeddable for a suitable pair
of adjacent vertices.

2. An upper-embeddable cubic graph G is called tightly upper-embeddable
if it is not amply upper-embeddable.
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Amply upper-embeddable cubic graphs: odd case

Theorem (K., N. & S., 2014+)

The following are equivalent for every connected cubic graph G .

(i) G is amply two-face-embeddable.

(ii) G has a Xuong tree with a single odd cotree component, which is of
size at least three.

(iii) V (G ) has a partition {A, J} where A induces a tree and J is
near-independent.

Corollary

Let T be a triangulation of a closed surface by f triangles. If the
underlying graph of T ∗ is amply upper-embeddable and f ≡ 0 (mod 4),
then the truncation t(T ) has a cycle through all but two adjacent vertices.
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Classes of amply upper-embeddable cubic graphs

Theorem (K., N. & S., 2014+)

Every cyclically 4-edge-connected cubic graph is amply upper-embeddable.

This strengthens [Payan & Sakarovitch, 1975]:

In the odd case we can always guarantee a partition {A, J}
where A induces a tree and J is almost independent.

Corollary

Every connected edge-transitive cubic graphs is amply upper-embeddable.
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Applications

Theorem (K., N. & S., 2014+)

Let T be a triangulation of a closed surface by f triangles which is either
edge-transitive or has no separating cycle of length ≤ 3. Then t(T ) has a
Hamilton path. Moreover,

if f ≡ 2 (mod 4), then t(T ) has a Hamilton cycle, and

if f ≡ 0 (mod 4), then t(T ) has a cycle through all but two adjacent
vertices.

Corollary (Glover & Marušič, 2009)

Let K = Cay(H; r , r−1, l) be a cubic Cayley graph, where
H = 〈r , l | r s = l2 = (rl)3 = 1, . . . 〉.
Then K has a Hamilton path.

If |H| ≡ 2 (mod 4), then K has a Hamilton cycle.

If |H| ≡ 0 (mod 4), then K has a cycle through all but two adjacent
vertices.
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Applications

Graphs admitting a 2-cell embedding with each face of size ≤ 7
are upper-embeddable [Huang & Liu, 2000].

Theorem (K., N. & S., 2014+)

Let T be a polyhedral triangulation of a closed surface by f triangles such
that every vertex has valency ≤ 7. Then t(T ) has a Hamilton path, and if
f ≡ 2 (mod 4), then t(T ) has a Hamilton cycle.
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Tightly 2-face-embeddable graphs
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Tightly 2-face-embeddable graphs

We believe that every 3-connected cubic upper-embeddable graph
is amply upper-embeddable.
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Final remarks and problems

Problem

What is the proportion of upper-embeddable cubic graphs in the class of
all cubic graphs?
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Thank you!
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