HAMILTON CYCLES
 in truncated triangulations of closed surfaces

Martin Škoviera
Comenius University, Bratislava, Slovakia
joint work with
Michal Kotrbčík \& Roman Nedela

$$
\text { SIGMAP } 2014
$$

Elim Conference Centre, 7th July 2014

Graph symmetry and hamiltonicity

Question (Lovász, 1969)

Does every connected vertex-transitive graph have a Hamilton path, i. e., a simple path going through all vertices?

- Only 5 connected v-t graphs with no Hamilton cycle are known.
- None of them is a Cayley graph.

Graph symmetry and hamiltonicity

Question (Lovász, 1969)

Does every connected vertex-transitive graph have a Hamilton path, i. e., a simple path going through all vertices?

- Only 5 connected v-t graphs with no Hamilton cycle are known.
- None of them is a Cayley graph.

Conjecture (Folklore)

Every Cayley graph (of order ≥ 3) has a Hamilton cycle.

Graph symmetry and hamiltonicity

Question (Lovász, 1969)

Does every connected vertex-transitive graph have a Hamilton path, i. e., a simple path going through all vertices?

- Only 5 connected v-t graphs with no Hamilton cycle are known.
- None of them is a Cayley graph.

Conjecture (Folklore)

Every Cayley graph (of order ≥ 3) has a Hamilton cycle.

Counter-Conjecture (Babai, 1995)

For some $c>0$, there are infinitely many vertex-transitive graphs G, even Cayley graphs, without cycles of length $>(1-c)|G|$.

Hamilton cycles in cubic Cayley graphs

Let $H=\langle r, I\rangle$ be a $(2,3, s)$-presented finite group; i.e., $r^{s}=l^{2}=(r l)^{3}=1$.
Then H is a finite quotient of the modular group $\operatorname{PSL}(2, \mathbb{Z})$.

Theorem (Glover \& Marušič, 2009)

Let $K=\operatorname{Cay}\left(H ; r, r^{-1}, I\right)$ be a cubic Cayley graph, where
$H=\left\langle r, l \mid r^{s}=I^{2}=(r \mid)^{3}=1, \ldots\right\rangle$ is a finite quotient of the modular group $\operatorname{PSL}(2, \mathbb{Z})$. Then K has a Hamilton path. Moreover,

- if $|H| \equiv 2(\bmod 4)$, then K has a Hamilton cycle
- if $|H| \equiv 0(\bmod 4)$, then K has a cycle through all but two adjacent vertices.

Proof I: Cayley map and the corresponding triangulation

Proof II: How to find a Hamilton cycle

Proof II: How to find a Hamilton cycle

We construct a Hamilton cycle in $\mathcal{C M}$ as $\partial(\bigcup \mathcal{F})$ of a set \mathcal{F} of red-blue hexagonal faces of $\mathcal{C M}$.

- The boundary must be connected and must cover all vertices.
- To cover all the vertices, the complementary set of hexagons must be 'independent'.
- To get a connected boundary, $\bigcup \mathcal{F}$ must be connected and homologically trivial, i.e., a 'tree' of faces.

Proof III: Dual of the triangulation

hexagonal faces of $\mathcal{C} \mathcal{M} \longleftrightarrow$ faces of the triangulation \mathcal{T} \longleftrightarrow vertices of the underlying cubic graph G^{*} of the dual map \mathcal{T}^{*}

Proof III: Dual of the triangulation

hexagonal faces of $\mathcal{C} \mathcal{M} \longleftrightarrow$ faces of the triangulation \mathcal{T} \longleftrightarrow vertices of the underlying cubic graph G^{*} of the dual map \mathcal{T}^{*}

In other words:

We need to find a partition of $V\left(G^{*}\right)$ into two sets A and J, where A induces a tree and J is independent.

Proof IV: Symmetry and vertex-partitions in cubic graphs

Theorem 1 (Nedela \& S., 1995)
The cyclic connectivity of a cubic vertex-transitive graph equals the length of a shortest cycle.

Proof IV: Symmetry and vertex-partitions in cubic graphs

Theorem 1 (Nedela \& S., 1995)

The cyclic connectivity of a cubic vertex-transitive graph equals the length of a shortest cycle.

Theorem 2 (Payan \& Sakarovitch, 1975)

Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then the following hold:
(i) If $n \equiv 2(\bmod 4)$, then $V(G)$ has a partition $\{A, J\}$ where A induces a tree and J is independent.
(ii) If $n \equiv 0(\bmod 4)$, then $V(G)$ has a partition $\{A, J\}$ where either A induces a tree and J induces a graph with a single edge, or A induces a forest with two components and J is independent.

Proof IV: Symmetry and vertex-partitions in cubic graphs

Theorem 1 (Nedela \& S., 1995)

The cyclic connectivity of a cubic vertex-transitive graph equals the length of a shortest cycle.

Theorem 2 (Payan \& Sakarovitch, 1975)

Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then the following hold:
(i) If $n \equiv 2(\bmod 4)$, then $V(G)$ has a partition $\{A, J\}$ where A induces a tree and J is independent.
(ii) If $n \equiv 0(\bmod 4)$, then $V(G)$ has a partition $\{A, J\}$ where either A induces a tree and J is near-independent, or A induces a forest with two components and J is independent.

Symmetry is only used to derive cyclic connectivity ≥ 4 (or ≥ 6) (!!)

Proof IV: Symmetry and vertex-partitions in cubic graphs

Theorem 1 (Nedela \& S., 1995)

The cyclic connectivity of a cubic vertex-transitive graph equals the length of a shortest cycle.

Theorem 2 (Payan \& Sakarovitch, 1975)

Let G be a cyclically 4-edge-connected cubic graph with n vertices. Then the following hold:
(i) If $n \equiv 2(\bmod 4)$, then $V(G)$ has a partition $\{A, J\}$ where A induces a tree and J is independent.
(ii) If $n \equiv 0(\bmod 4)$, then $V(G)$ has a partition $\{A, J\}$ where either A induces a tree and J is near-independent, or A induces a forest with two components and J is independent.

Symmetry is only used to derive cyclic connectivity ≥ 4 (or ≥ 6) (!!)
How far from symmetry can we go?

Example: Construction of a Hamilton cycle in $t(\mathcal{T})$

Example: Construction of a Hamilton cycle in $t(\mathcal{T})$

Example: Construction of a Hamilton cycle in $t(\mathcal{T})$

Example: Construction of a Hamilton cycle in $t(\mathcal{T})$

Example: Construction of a Hamilton cycle in $t(\mathcal{T})$

Example: Construction of a Hamilton cycle in $t(\mathcal{T})$

Example: The required Hamilton cycle

When does such a structure exist?

Maximum genus of a graph

Maximum genus of a graph

Definition. The maximum genus $\gamma_{M}(G)$ of a graph is the largest genus of an orientable surface in which G has a cellular embedding.

- By Euler-Poincaré Equation, $\gamma_{M}(G) \leq\lfloor\beta(G) / 2\rfloor$ where $\beta(G)=|E|-|V|+1$ is the Betti number of G.

Maximum genus of a graph

Definition. The maximum genus $\gamma_{M}(G)$ of a graph is the largest genus of an orientable surface in which G has a cellular embedding.

- By Euler-Poincaré Equation, $\gamma_{M}(G) \leq\lfloor\beta(G) / 2\rfloor$ where $\beta(G)=|E|-|V|+1$ is the Betti number of G.

Definition. A graph G is upper-embeddable if $\gamma_{M}(G)=\lfloor\beta(G) / 2\rfloor$; equivalently, if it has an embedding with one or two faces.

Upper-embeddable graphs

Theorem (Jungerman, 1978, Xuong, 1979; Nebeský, 1981)

The following statements are equivalent for every connected graph G :
(i) G is upper-embeddable.
(ii) G has a spanning T such that $G-E(T)$ has at most one component of odd size.
(iii) $o b(G-A) \leq|A|+1$ each $A \subseteq E(G)$.
ob denotes the number of edge-blocks with odd Betti number

Upper-embeddable graphs

Theorem (Jungerman, 1978, Xuong, 1979; Nebeský, 1981)

The following statements are equivalent for every connected graph G :
(i) G is upper-embeddable.
(ii) G has a spanning T such that $G-E(T)$ has at most one component of odd size.
(iii) $o b(G-A) \leq|A|+1$ each $A \subseteq E(G)$.
ob denotes the number of edge-blocks with odd Betti number

Two types of upper-embeddable cubic graphs

- one-face embeddable $\Longleftrightarrow n \equiv 2(\bmod 4)$
\Longleftrightarrow all Xuong cotree components are even
- two-face embeddable $\Longleftrightarrow n \equiv 0(\bmod 4)$
\Longleftrightarrow one Xuong cotree component is odd

Upper-embeddable cubic graphs: even case

Theorem (K., N. \& S., 2014+)

The following are equivalent for every connected cubic graph G.
(i) G one-face-embeddable.
(ii) $V(G)$ has a partition $\{A, J\}$ where A induces a tree and J is independent.

Upper-embeddable cubic graphs: even case

Theorem (K., N. \& S., 2014+)

The following are equivalent for every connected cubic graph G.
(i) G one-face-embeddable.
(ii) $V(G)$ has a partition $\{A, J\}$ where A induces a tree and J is independent.

Corollary

Let \mathcal{T} be a triangulation of a closed surface by f triangles. If the underlying graph of \mathcal{T}^{*} is upper-embeddable and $f \equiv 2(\bmod 4)$, then the truncation $t(\mathcal{T})$ has a Hamilton cycle.

Interesting example

Upper-embeddable cubic graphs: odd case

Theorem (K., N. \& S., 2014+)

The following are equivalent for every connected cubic graph G.
(i) G is two-face-embeddable.
(ii) $V(G)$ has a partition $\{A, J\}$ where either

- A induces a tree and J is near-independent, or
- A induces a forest with two components and J is independent.

Corollary

Let \mathcal{T} be a triangulation of a closed surface by f triangles. If the underlying graph of \mathcal{T}^{*} is upper-embeddable and $f \equiv 0(\bmod 4)$, then the truncation $t(\mathcal{T})$ has a Hamilton path.

Ample upper-embeddability

Definition.

1. A cubic graph G is amply upper-embeddable if
(1) G is upper-embeddable
(2) $G-\{x, y\}$ remains upper-embeddable for a suitable pair of adjacent vertices.
2. An upper-embeddable cubic graph G is called tightly upper-embeddable if it is not amply upper-embeddable.

Amply upper-embeddable cubic graphs: odd case

Theorem (K., N. \& S., 2014+)

The following are equivalent for every connected cubic graph G.
(i) G is amply two-face-embeddable.
(ii) G has a Xuong tree with a single odd cotree component, which is of size at least three.
(iii) $V(G)$ has a partition $\{A, J\}$ where A induces a tree and J is near-independent.

Amply upper-embeddable cubic graphs: odd case

Theorem (K., N. \& S., 2014+)

The following are equivalent for every connected cubic graph G.
(i) G is amply two-face-embeddable.
(ii) G has a Xuong tree with a single odd cotree component, which is of size at least three.
(iii) $V(G)$ has a partition $\{A, J\}$ where A induces a tree and J is near-independent.

Corollary

Let \mathcal{T} be a triangulation of a closed surface by f triangles. If the underlying graph of \mathcal{T}^{*} is amply upper-embeddable and $f \equiv 0(\bmod 4)$, then the truncation $t(\mathcal{T})$ has a cycle through all but two adjacent vertices.

Classes of amply upper-embeddable cubic graphs

Theorem (K., N. \& S., 2014+)

Every cyclically 4-edge-connected cubic graph is amply upper-embeddable.

This strengthens [Payan \& Sakarovitch, 1975]:
In the odd case we can always guarantee a partition $\{A, J\}$ where A induces a tree and J is almost independent.

Classes of amply upper-embeddable cubic graphs

Theorem (K., N. \& S., 2014+)

Every cyclically 4-edge-connected cubic graph is amply upper-embeddable.

This strengthens [Payan \& Sakarovitch, 1975]:
In the odd case we can always guarantee a partition $\{A, J\}$ where A induces a tree and J is almost independent.

Corollary

Every connected edge-transitive cubic graphs is amply upper-embeddable.

Applications

Theorem (K., N. \& S., 2014+)

Let \mathcal{T} be a triangulation of a closed surface by f triangles which is either edge-transitive or has no separating cycle of length ≤ 3. Then $t(\mathcal{T})$ has a Hamilton path. Moreover,

- if $f \equiv 2(\bmod 4)$, then $t(\mathcal{T})$ has a Hamilton cycle, and
- if $f \equiv 0(\bmod 4)$, then $t(\mathcal{T})$ has a cycle through all but two adjacent vertices.

Applications

Theorem (K., N. \& S., 2014+)

Let \mathcal{T} be a triangulation of a closed surface by f triangles which is either edge-transitive or has no separating cycle of length ≤ 3. Then $t(\mathcal{T})$ has a Hamilton path. Moreover,

- if $f \equiv 2(\bmod 4)$, then $t(\mathcal{T})$ has a Hamilton cycle, and
- if $f \equiv 0(\bmod 4)$, then $t(\mathcal{T})$ has a cycle through all but two adjacent vertices.

Corollary (Glover \& Marušič, 2009)

Let $K=\operatorname{Cay}\left(H ; r, r^{-1}, I\right)$ be a cubic Cayley graph, where $H=\left\langle r, l \mid r^{s}=l^{2}=(r l)^{3}=1, \ldots\right\rangle$.
Then K has a Hamilton path.

- If $|H| \equiv 2(\bmod 4)$, then K has a Hamilton cycle.
- If $|H| \equiv 0(\bmod 4)$, then K has a cycle through all but two adjacent vertices.

Applications

Theorem (K., N. \& S., 2014+)

Let \mathcal{T} be a triangulation of a closed surface by f triangles which is either edge-transitive or has no separating cycle of length ≤ 3. Then $t(\mathcal{T})$ has a Hamilton path. Moreover,

- if $f \equiv 2(\bmod 4)$, then $t(\mathcal{T})$ has a Hamilton cycle, and
- if $f \equiv 0(\bmod 4)$, then $t(\mathcal{T})$ has a cycle through all but two adjacent vertices.

Corollary (K., N. \& S., 2014+)

Let $K=\operatorname{Cay}(H ; x, y, z)$ be a cubic Cayley graph, where $H=\left\langle x, y, z \mid x^{2}=y^{2}=z^{2}=1,(x y)^{3}=(y z)^{3}=1, \ldots\right\rangle$.
Then K has a Hamilton path.

- If $|H| \equiv 2(\bmod 4)$, then K has a Hamilton cycle.
- If $|H| \equiv 0(\bmod 4)$, then K has a cycle through all but two adjacent vertices.

Applications

Graphs admitting a 2 -cell embedding with each face of size ≤ 7 are upper-embeddable [Huang \& Liu, 2000].

Theorem (K., N. \& S., 2014+)

Let \mathcal{T} be a polyhedral triangulation of a closed surface by f triangles such that every vertex has valency ≤ 7. Then $t(\mathcal{T})$ has a Hamilton path, and if $f \equiv 2(\bmod 4)$, then $t(\mathcal{T})$ has a Hamilton cycle.

Tightly 2-face-embeddable graphs

Tightly 2-face-embeddable graphs

Tightly 2-face-embeddable graphs

Tightly 2-face-embeddable graphs

We believe that every 3-connected cubic upper-embeddable graph is amply upper-embeddable.

Final remarks and problems

Problem

What is the proportion of upper-embeddable cubic graphs in the class of all cubic graphs?

Thank you!

