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Convex Regular Polytopes — Quick Review

Platonic solids {3,3}, {3,4}, {4,3}, {3,5}, {5,3}

DIMENSION n ≥4
name symbol #facets group order

simplex {3,3,3} 5 S5 120

cross-polytope {3,3,4} 16 B4 384

cube {4,3,3} 8 B4 384

24-cell {3,4,3} 24 F4 1152

600-cell {3,3,5} 600 H4 14400

120-cell {5,3,3} 120 H4 14400
simplex {3,. . . ,3} n+1 Sn+1 (n+ 1)!

cross-polytope {3,. . . ,3,4} 2n Bn+1 2nn!

cube {4,3,. . . ,3} 2n Bn+1 2nn!



Semiregular Convex Polytopes

Facets are regular (convex) polytopes. Geometric sym-

metry group is vertex-transitive.

• Plane — regular polygons

• 3-space — Archimedean solids, prisms and antiprisms





• Three polytopes for n = 4, and one each for n = 5,6,7,8.

• n = 4: t1{3,3,3}, snub 24-cell, and t1{3,3,5}.
Schlegel diagram for t1{3,3,3}

• n = 5: half-5-cube.

• Gosset polytopes 221, 321, 421 related to the Coxeter

groups E6, E7 and E8.
Vertices of 421 are the 240 roots of E8, with vertex-figure 321. Facets

are 7-simplices and 7-crosspolytopes.

Semiregular polytopes are uniform polytopes.



Hereditary polytopes: every symmetry of every
facet is a symmetry of the polytope.

No! Yes!

• Archimedean solids: only the cuboctahedron
and icosidodecahedron are hereditary!



Abstract Polytopes P of rank n
(Grünbaum, Danzer, 70’s)

P ranked partially ordered set

i-faces elements of rank i ( = -1,0,1,...,n)

i=0 vertices

i=1 edges

i=n-1 facets

• Faces F−1, Fn (of ranks -1, n)

• Each flag of P contains exactly n+2 faces

• P is connected

• Intervals of rank 1 are diamonds:

w

w
w w
A
A
A
A

A
A
A
A�

�
�
�

�
�
�
�

i

i+ 1

i− 1



Rank 3: Maps (2-cell tessellations) on closed surfaces.

{4,4}(3,0)

(0,0) (3,0)

P regular : Γ(P) flag transitive

P chiral: Γ(P) two flag-orbits, adjacent flags in different or-
bits

P semi-regular : P regular facets, Γ(P) vertex-transitive

P hereditary : every automorphism of every facet of P ex-
tends (uniquely) to an automorphism of P .



Polytopes with highly symmetric facets!

• Interesting case: regular facets, chiral facets, etc.

• Theorem: P hereditary, each facet of P regular or chiral.

Then each facet regular or each facet chiral.

• No mixed type. P regular-facetted or P chiral-facetted.

• P hereditary, each facet {0, . . . , i}-chain transitive for some

i ≤ n − 2. Then P is {0, . . . , i}-chain transitive (and hence

its i-faces are regular and mutually isomorphic).



Hereditary n-polytopes with regular facets

• Theorem: P regular-facetted. Then P is hereditary iff

P is regular or a two-orbit polytope of type 2{0,...,n−2}.

Two-orbit polytopes of type 2I, I ⊆ {0, . . . , n− 1}:
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i ρi exists precisely for i ∈ I

ρi(Φ) = Φi
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Hubard (2008), Hubard, Orbanic & Weiss (2009)



Rank 3 examples (regular, or 2-orbit of type 2{0,1})

• medials of non-selfdual regular polyhedra {p, q}
– p-gonal and q-gonal faces, 4-valent vertices

– cube −→ cuboctahedron

• derived from bipartite regular maps K of type {2r, q}
– r-gonal faces inscribed in old 2r-gonal faces, and q-

gonal faces as old vertex-figures

– 2q-valent vertices

– notation: Ka (“a” for “alternating”)



Rank 4 examples (regular, or 2-orbit of type 2{0,1,2})

• semi-regular tessellation of E3 by regular tetrahedra and

regular octahedra (also 4-toroids related to this)



Hereditary n-polytopes with chiral facets

• Theorem: A chiral-facetted hereditary n-polytope either
is a 2-orbit polytope which is itself chiral or is of type 2{n−1},
or is a 4-orbit polytope.

Representative flags under Γ(P ) from among

Φ,Φj,Φn−1,Φn−1,j (j = 0, . . . , n− 2).

Chiral-facetted, chiral polytopes: many examples

S. & Weiss (rank 4, early 1990’s), Monson & Weiss (rank 4, 1990’s),

Conder, Hubard & Pisanki (rank 5, 2008), Pellicer (any rank, 2009)

Every chiral polytope occurs as a facet of a chiral polytope.
(Cunningham & Pellicer 2013, S. & Weiss 1994)



Chiral-facetted hereditary 2-orbit polytopes of
type 2{n−1}

• Only ρn−1 is in Γ(P )! Isomorphic facets! Equifacetted!

• Examples from the power-polytope construction 2K (Danzer).

K a chiral (n−1)-polytope, K facet-describable, K∗ its dual.

The dual of 2K
∗

is hereditary, chiral-facetted with facets iso-
morphic to K, 2-orbit of type 2{n−1}, with group

C2 o Γ(K) = C
f
2 o Γ(K), f := #facets of K.

Example: K = {4,4}(1,3)

4-polytope (2K
∗
)∗ of type Schläfli type {4,4,4}, with facets

{4,4}(1,3), vertex-figures {4,4}(4,0), and group C10
2 o[4,4](1,3).



Power Polytopes 2K

• 2K regular if K regular

• 2K is k-orbit if K is k-orbit (k ≥ 1)

• 2K is 2-orbit of type J := {0}∪{i+ 1|i ∈ I} if K is 2-orbit

of type I.

• 2K is 2-orbit of type {0} if K is chiral



Chiral-facetted hereditary 4-orbit polytopes

Blueprint

• Relationship between two tilings in E3: the cubical tessel-

lation C (bipartite!), and the semiregular tessellation T by

regular octahedra and regular tetrahedra.

• Color vertices of C red and yellow! Vertices of T are the

yellow vertices of C.

• Two kinds of tiles (facets) in T : octahedral vertex-figures

of C at red vertices, and tetrahedra inscribed in tiles of C.

Note: T regular-facetted, 2-orbit of type 2{0,1,2}, not 4-orbit.



Old polytope P

• P regular or chiral 4-polytope of type {4, q, r}, with facets
K and vertex-figures L

• edge graph of P bipartite (yellow and red vertices)

• P , L vertex-describable, and opposite vertices in a 2-face
are never opposite vertices of another 2-face

New polytope P a

• two kinds of facets:

– vertex-figures of P at the red vertices, isomorphic to L

– polyhedra F a (∼= Ka), with F a (bipartite!) facet of P

• vertex-figures isomorphic to medials Me(L)



• P a hereditary

• P a alternating, four facets around an edge

• P a regular-facetted if K and L are regular

(P a semiregular, alternating — Monson & S.)

• P a chiral-facetted if K and L are chiral

• P a chiral-facetted and 4-orbit if K,L chiral and L 6' Ka

(for example, if |Γ(L)| 6= |Γ(K)|/2)

• Γc(P ) ≤ Γ(P a), index 1 or 2, same or twice the number

of flag-orbits as Γ(P a)



Example: P = {{4,4}(1,3), {4,4}(1,3)} (bipartite!)

P a has facets {4,4}(1,3) and {4,4}(1,2) = {4,4}a(1,3), and

vertex-figures {4,4}(2,4) = Me({4,4}(1,3)).



Work in progress (with Antonio Montero, Luis Ruiz,

Asia Ivić Weiss)

• Chirally hereditary polytopes: every rotational automor-

phism of every facet is a global automorphism.

Chiral polytopes are chirally hereditary, even those with regular facets.

• (Strongly) j-face hereditary polytopes (1 ≤ j ≤ n − 1):

every automorphism of every j-face extends to a global au-

tomorphism (fixing every face containing the j-face, resp.).

• Inductively hereditary polytopes: each face of rank at

least 3 (including P itself) is a non-regular hereditary poly-

tope.



• Geometrically hereditary polytopes: convex polytopes in

Ek that inherit all the geometric symmetries of each of its

facets.

Completely unexplored!



Extension problems: To which extent can one preassign

hereditary polytopes as facets of hereditary polytopes of

higher rank?

• Can show: Every finite vertex-describable j-face hered-

itary n-polytope P is the vertex-figure of vertex-transitive

(j + 1)-face hereditary (n+ 1)-polytope. (Take 2P !)



....... The End .......

Thank you!



Abstract

Every regular polytope has the remarkable property that it

inherits all symmetries of each of its facets. This property

distinguishes a natural class of polytopes which are called

hereditary. In this talk we present the basic theory of hered-

itary polytopes, focussing on the analysis and construction

of hereditary polytopes with highly symmetric faces.


