

Self-Complementary Metacirculants

Grant Rao (joint work with Cai Heng Li and Shu Jiao Song)

The University of Western Australia

July 7, 2014

• Γ is vertex-transitive if Aut Γ is transitive on V.

- Γ is vertex-transitive if Aut Γ is transitive on V.
- For a finite group R, let $R^{\#} := R \setminus \{1\}, S \subseteq R^{\#}$.

- Γ is vertex-transitive if Aut Γ is transitive on V.
- For a finite group R, let $R^{\#} := R \setminus \{1\}, S \subseteq R^{\#}$.

 $\Gamma = Cay(R, S)$ is a *Cayley graph* where

$$V = R,$$

$$E = \{(a, b) | ba^{-1} \in S\}$$

- Γ is vertex-transitive if Aut Γ is transitive on V.
- For a finite group R, let R[#] := R \ {1}, S ⊆ R[#]. Γ = Cay(R, S) is a Cayley graph where

$$egin{aligned} V &= R, \ E &= \{(a,b)|ba^{-1} \in S\} \end{aligned}$$

$$\varGamma$$
 undirected $\Leftrightarrow S = S^{-1} = \{s^{-1} | s \in S\}.$

- Γ is vertex-transitive if Aut Γ is transitive on V.
- For a finite group R, let R[#] := R \ {1}, S ⊆ R[#]. Γ = Cay(R, S) is a Cayley graph where

$$V = R,$$

 $E = \{(a, b) | ba^{-1} \in S\}$

 Γ undirected $\Leftrightarrow S = S^{-1} = \{s^{-1} | s \in S\}.$

• A *circulant* is a Cayley graph of a cyclic group.

- Γ is vertex-transitive if Aut Γ is transitive on V.
- ► For a finite group R, let $R^{\#} := R \setminus \{1\}, S \subseteq R^{\#}$.
 - $\Gamma = Cay(R, S)$ is a *Cayley graph* where

$$V = R,$$

 $E = \{(a, b) | ba^{-1} \in S\}$

 Γ undirected $\Leftrightarrow S = S^{-1} = \{s^{-1} | s \in S\}.$

- A *circulant* is a Cayley graph of a cyclic group.
- A group R is *metacyclic* if exists N ⊲ R such that N, R/N are cyclic. Γ is a *metacirculant* if R < AutΓ is transitive and metacyclic.</p>

Γ is called *self-complementary (SC)* if $\Gamma \cong \overline{\Gamma}$. *Self-complementary vertex-transitive (SCVT) graphs* are the graphs that are both self-complementary and vertex-transitive.

 Γ is called *self-complementary (SC)* if $\Gamma \cong \overline{\Gamma}$.

An isomorphism $\sigma: \Gamma \to \overline{\Gamma}$ is a *complementing isomorphism*.

An isomorphism $\sigma: \Gamma \to \overline{\Gamma}$ is a *complementing isomorphism*.

•
$$o(\sigma) = 2^e;$$

- σ does not fix any edge \Rightarrow 4 | $o(\sigma)$;
- $\sigma^2 \in \operatorname{Aut} \Gamma \Rightarrow \sigma$ normalises $\operatorname{Aut} \Gamma$.

Observation

$$\Gamma = Cay(R, S)$$
 is an SCVT-graph. $R = \mathbb{Z}_3^2, \quad S = \{(0, 1), (2, 0), (0, 2), (1, 0)\}$

Observation

П

$$\Gamma = Cay(R, S)$$
 is an SCVT-graph.
 $R = \mathbb{Z}_3^2, \quad S = \{(0, 1), (2, 0), (0, 2), (1, 0)\}$
Define

$$\sigma = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \in \operatorname{GL}(2,3).$$

Then $S^{\sigma} = R^{\#} \setminus S$ and $S \bigcup S^{\sigma} = R^{\#}$.

- (Sachs, 1962) SC-graphs
 - properties of SC-graphs
 - construction method for SC-graphs
 - conditions for the order of SC-circulants

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1 \pmod{4}$.

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1 \pmod{4}$.
- ► (Rao, 1985) Regular and strongly regular SC-graphs.

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1 \pmod{4}$.
- ► (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1 \pmod{4}$.
- ► (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- (Mathon, 1988) Strongly regular SC-graphs
 - adjacency matrices
 - small order graphs

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1 \pmod{4}$.
- ► (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- ▶ (Mathon, 1988) Strongly regular SC-graphs
- (Fronček, Rosa and Širáň, 1996) (Alspach, Morris and Vilfred, 1999) The orders of SC-circulants.

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1 \pmod{4}$.
- ► (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- (Mathon, 1988) Strongly regular SC-graphs
- (Fronček, Rosa and Širáň, 1996) (Alspach, Morris and Vilfred, 1999) The orders of SC-circulants.
- ► (Muzychuk, 1999) An SCVT-graph of order *n* exists $\Leftrightarrow n_p \equiv 1 \pmod{4} \forall p$.

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1 \pmod{4}$.
- ► (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- (Mathon, 1988) Strongly regular SC-graphs
- (Fronček, Rosa and Širáň, 1996) (Alspach, Morris and Vilfred, 1999) The orders of SC-circulants.
- ► (Muzychuk, 1999) An SCVT-graph of order *n* exists $\Leftrightarrow n_p \equiv 1 \pmod{4} \forall p$.
- ► (Li, Sun and Xu, 2014) SC-circulants of prime-power order.

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1 \pmod{4}$.
- ► (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- (Mathon, 1988) Strongly regular SC-graphs
- (Fronček, Rosa and Širáň, 1996) (Alspach, Morris and Vilfred, 1999) The orders of SC-circulants.
- ► (Muzychuk, 1999) An SCVT-graph of order *n* exists $\Leftrightarrow n_p \equiv 1 \pmod{4} \forall p$.
- ▶ (Li, Sun and Xu, 2014) SC-circulants of prime-power order.
- ▶ (Li and Rao, 2014) SCVT-graphs of order pq.

► The diagonal Ramsey number ► Example

$$R(n,n) = \min\{|V\Gamma| : \mathsf{K}_n \leq \Gamma \text{ or } \mathsf{K}_n \leq \overline{\Gamma}\}$$

$$R(n,n) = \min\{|V\Gamma| : \mathsf{K}_n \leq \Gamma \text{ or } \mathsf{K}_n \leq \overline{\Gamma}\}$$

► The Shannon capacity

$$\Theta(\Gamma) = \sup_{k} \sqrt[k]{\alpha(\Gamma^{k})} = \lim_{k \to \infty} \sqrt[k]{\alpha(\Gamma^{k})}$$

- $R(n,n) = \min\{|V\Gamma| : \mathsf{K}_n \leq \Gamma \text{ or } \mathsf{K}_n \leq \overline{\Gamma}\}$
- The Shannon capacity

$$\Theta(\Gamma) = \sup_{k} \sqrt[k]{\alpha(\Gamma^{k})} = \lim_{k \to \infty} \sqrt[k]{\alpha(\Gamma^{k})}$$

(Lovász, 1979) $\Theta(\text{an SCVT-graph of order } n) = \sqrt{n}$.

- ► The diagonal Ramsey number ► Example
 - $R(n,n) = \min\{|V\Gamma| : \mathsf{K}_n \leq \Gamma \text{ or } \mathsf{K}_n \leq \overline{\Gamma}\}$
- The Shannon capacity

$$\Theta(\Gamma) = \sup_{k} \sqrt[k]{\alpha(\Gamma^{k})} = \lim_{k \to \infty} \sqrt[k]{\alpha(\Gamma^{k})}$$

(Lovász, 1979) $\Theta(an \text{ SCVT-graph of order } n) = \sqrt{n}$.

Homogeneous factorisations, transitive orbital decompositions

$$R(n,n) = \min\{|V\Gamma| : K_n \leq \Gamma \text{ or } K_n \leq \overline{\Gamma}\}$$

The Shannon capacity

$$\Theta(\Gamma) = \sup_{k} \sqrt[k]{\alpha(\Gamma^{k})} = \lim_{k \to \infty} \sqrt[k]{\alpha(\Gamma^{k})}$$

(Lovász, 1979) $\Theta(\text{an SCVT-graph of order } n) = \sqrt{n}$.

Homogeneous factorisations, transitive orbital decompositions

 (Zhang, 1992) Algebraic characterisation of arc-transitive SC-graphs.
 (Peisert, 2000) Classification of arc-transitive SC-graphs.

$$R(n,n) = \min\{|V\Gamma| : K_n \leq \Gamma \text{ or } K_n \leq \overline{\Gamma}\}$$

The Shannon capacity

$$\Theta(\Gamma) = \sup_{k} \sqrt[k]{\alpha(\Gamma^{k})} = \lim_{k \to \infty} \sqrt[k]{\alpha(\Gamma^{k})}$$

(Lovász, 1979) $\Theta(\text{an SCVT-graph of order } n) = \sqrt{n}$.

- Homogeneous factorisations, transitive orbital decompositions
- (Zhang, 1992) Algebraic characterisation of arc-transitive SC-graphs.
 (Peisert, 2000) Classification of arc-transitive SC-graphs.
- (Beezer, 2006) In 50,502,031,367,952 non-isomorphic graphs of order 13, only 2 of them are SCVT.

Construction of Self-Complementary Cayley Graphs

Observation Let R be a group and $\sigma \in Aut(R)$. Then

$$\operatorname{Cay}(R,S) \stackrel{\sigma}{\cong} \operatorname{Cay}(R,S^{\sigma}).$$

Construction of Self-Complementary Cayley Graphs

Observation Let *R* be a group and $\sigma \in Aut(R)$. Then

$$\operatorname{Cay}(R,S) \stackrel{\sigma}{\cong} \operatorname{Cay}(R,S^{\sigma}).$$

If there exists $\sigma \in Aut(R)$ such that

$$S^{\sigma}=R^{\#}\setminus S,$$

then

$$\varGamma = \mathsf{Cay}(R,S) \cong \mathsf{Cay}(R,S^\sigma) \cong \mathsf{Cay}(R,R^\# \setminus S) = \overline{\varGamma}.$$

Example

Properties of σ

(i) σ does not fix any element of R[#] ⇒ σ is *fixed-point-free*.
(ii) σ² fixes S and R[#] \ S ⇒ σ² ∈ AutΓ ⇒ σ normalises AutΓ.
(iii) o(σ) = 2^e, e ≥ 2.

Construction 1

1.
$$\langle \sigma^2 \rangle$$
-orbits on $R^{\#}$: $\Delta_1^+, \Delta_1^-, \Delta_2^+, \Delta_2^-, \dots, \Delta_r^+, \Delta_r^-$ where $(\Delta_i^+)^{\sigma} = \Delta_i^-$ for each *i*;

Construction 1

 Δ_2

 Δ_3^-

 Δ_4^-

Then Cay(R, S) is self-complementary.

⟨σ²⟩-orbits on R[#]: Δ⁺₁, Δ⁻₁, Δ⁺₂, Δ⁻₂, ..., Δ⁺_r, Δ⁻_r where (Δ⁺_i)^σ = Δ⁻_i for each i;
 S = ∪^r_{i=1} Δ^{ε_i}_i where ε_i = + or -.

Construction 2

Let $p \equiv 1 \text{ or } 9 \pmod{40}$, $R = \mathbb{Z}_p^2$, and let $\sigma \in \mathbf{Z}(\mathrm{GL}(2, p))$ with $8 \mid o(\sigma)$. Let $H = \langle \sigma, \mathrm{SL}(2, 5) \rangle$, $M = \langle \sigma^2, \mathrm{SL}(2, 5) \rangle$.

Construction 2 Let $p \equiv 1 \text{ or } 9 \pmod{40}$, $R = \mathbb{Z}_p^2$, and let $\sigma \in \mathbf{Z}(\mathrm{GL}(2, p))$ with $8 \mid o(\sigma)$. Let $H = \langle \sigma, \mathrm{SL}(2, 5) \rangle$, $M = \langle \sigma^2, \mathrm{SL}(2, 5) \rangle$.

M-orbits on R[#]: Δ⁺₁, Δ⁻₁, Δ⁺₂, Δ⁻₂, ..., Δ⁺_r, Δ⁻_r where (Δ⁺_i)^σ = Δ⁻_i for each i;
 S = ∪^r_{i=1} Δ^{ε_i}_i where ε_i = + or -.

Construction 2 Let $p \equiv 1 \text{ or } 9 \pmod{40}$, $R = \mathbb{Z}_p^2$, and let $\sigma \in \mathbf{Z}(\mathrm{GL}(2, p))$ with $8 \mid o(\sigma)$. Let $H = \langle \sigma, \mathrm{SL}(2, 5) \rangle$, $M = \langle \sigma^2, \mathrm{SL}(2, 5) \rangle$.

- 1. *M*-orbits on $R^{\#}$: $\Delta_1^+, \Delta_1^-, \Delta_2^+, \Delta_2^-, \dots, \Delta_r^+, \Delta_r^-$ where $(\Delta_i^+)^{\sigma} = \Delta_i^-$ for each *i*;
- 2. $S = \bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i} = +$ or -.

 $\Gamma = Cay(R, S)$ is an SC-metacirculant with Aut Γ insoluble.

1.
$$\langle \sigma^2 \rangle$$
-orbits on $R^{\#}$: $\Delta_1^+, \Delta_1^-, \Delta_2^+, \Delta_2^-, \dots, \Delta_r^+, \Delta_r^-$ where
 $(\Delta_i^+)^{\sigma} = \Delta_i^-$ for each *i*;
2. $S = \bigcup_{i=1}^r \Delta_i^{\varepsilon_i}$ where $\varepsilon_i = +$ or $-$.

Construction 2

Let $p \equiv 1$ or 9 (mod 40), $R = \mathbb{Z}_p^2$, and let $\sigma \in \mathbf{Z}(\mathrm{GL}(2, p))$ with 8 | $o(\sigma)$. Let $H = \langle \sigma, \mathrm{SL}(2, 5) \rangle$, $M = \langle \sigma^2, \mathrm{SL}(2, 5) \rangle$.

Lemma 3

There exist SC-metacirculants of order $p_1^2 \dots p_t^2$ (p_i distinct) with Aut $\Gamma \geq \mathbb{Z}_{p_1\dots p_t}^2$: $(\mathbb{Z}_{\ell} \circ \mathrm{SL}(2,5)^t)$.

Theorem 4 (Li and Praeger, 2012)

The automorphism group of a self-complementary circulant is soluble.

Theorem 4 (Li and Praeger, 2012)

The automorphism group of a self-complementary circulant is soluble.

The following theorem extends the result.

Theorem 5 (Li, Rao and Song, 2014)

The automorphism group of a self-complementary metacirculant is either soluble, or contains composition factor A_5 .

Proof of theorem 5

- Γ is a self-complementary metacirculant
- σ is a complementing isomorphism
- $G = \operatorname{Aut} \Gamma$

$$\blacktriangleright X = \langle G, \sigma \rangle = G.\mathbb{Z}_2$$

• R < G is transitive and metacyclic

Proof of theorem 5

- Γ is a self-complementary metacirculant
- σ is a complementing isomorphism
- $G = \operatorname{Aut} \Gamma$

$$\blacktriangleright X = \langle G, \sigma \rangle = G.\mathbb{Z}_2$$

R < G is transitive and metacyclic</p>

A block system \mathcal{B} is a nontrivial X-invariant partition of V.

- (i) V has no block systems $\Rightarrow X$ is primitive.
- (ii) V has a block system $\Rightarrow X$ is imprimitive.

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004) If X is primitive, then (i) X is affine, or

(ii) X is of product action type with $soc(X) = PSL(2, q^2)^{\ell}$.

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004) If X is primitive, then (i) X is affine, or

(ii) X is of product action type with $soc(X) = PSL(2, q^2)^{\ell}$.

1. *R* is metacyclic \Rightarrow *X* is affine of dimension \leq 2.

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004) If X is primitive, then (i) X is affine, or

- (ii) X is of product action type with $soc(X) = PSL(2, q^2)^{\ell}$.
 - 1. *R* is metacyclic \Rightarrow *X* is affine of dimension \leq 2.
 - 2. X is insoluble $\Rightarrow X = \mathbb{Z}_{p}^{2}: (\mathbb{Z}_{\ell} \circ \mathrm{SL}(2,5)) \rightarrow \text{construction}$

- If X is imprimitive, then:
 - (i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
- (ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq \operatorname{Aut}\Sigma$ and each element of $X^{\mathcal{B}} \setminus G^{\mathcal{B}}$ is its complementing isomorphism.

- If X is imprimitive, then:
 - (i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
- (ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq \operatorname{Aut}\Sigma$ and each element of $X^{\mathcal{B}} \setminus G^{\mathcal{B}}$ is its complementing isomorphism.
 - 1. Let \mathcal{B} be a minimal block system of V.

- If X is imprimitive, then:
 - (i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
- (ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq \operatorname{Aut}\Sigma$ and each element of $X^{\mathcal{B}} \setminus G^{\mathcal{B}}$ is its complementing isomorphism.
 - 1. Let \mathcal{B} be a minimal block system of V.
 - 2. Then $X = K \cdot X^{\mathcal{B}}$, and $X^{\mathcal{B}}_{\mathcal{B}}$ primitive on \mathcal{B} .

Theorem 7 (Li and Praeger, 2003)

If X is imprimitive, then:

- (i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
- (ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq \operatorname{Aut}\Sigma$ and each element of $X^{\mathcal{B}} \setminus G^{\mathcal{B}}$ is its complementing isomorphism.
 - 1. Let \mathcal{B} be a minimal block system of V.
 - 2. Then $X = K \cdot X^{\mathcal{B}}$, and $X^{\mathcal{B}}_{\mathcal{B}}$ primitive on \mathcal{B} .
 - 3. $R^B_B < X^B_B \Rightarrow \text{If } X^B_B \text{ insoluble, then } X^B_B = \mathbb{Z}^2_p: (\mathbb{Z}_\ell \circ \text{SL}(2,5)).$

Theorem 7 (Li and Praeger, 2003)

If X is imprimitive, then:

- (i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
- (ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq \operatorname{Aut}\Sigma$ and each element of $X^{\mathcal{B}} \setminus G^{\mathcal{B}}$ is its complementing isomorphism.
 - 1. Let \mathcal{B} be a minimal block system of V.
 - 2. Then $X = K \cdot X^{\mathcal{B}}$, and $X^{\mathcal{B}}_{\mathcal{B}}$ primitive on \mathcal{B} .
 - 3. $R_B^B < X_B^B \Rightarrow \text{If } X_B^B \text{ insoluble, then } X_B^B = \mathbb{Z}_p^2: (\mathbb{Z}_\ell \circ \text{SL}(2,5)).$
- 4. Consider $\mathcal{K}^B \leq \mathcal{X}^B_B$ and $\mathcal{K} \leq \mathcal{K}^{B_1} \times \ldots \times \mathcal{K}^{B_2}$.

- If X is imprimitive, then:
 - (i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
- (ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq \operatorname{Aut}\Sigma$ and each element of $X^{\mathcal{B}} \setminus G^{\mathcal{B}}$ is its complementing isomorphism.
 - 1. Let \mathcal{B} be a minimal block system of V.
 - 2. Then $X = K \cdot X^{\mathcal{B}}$, and $X^{\mathcal{B}}_{\mathcal{B}}$ primitive on \mathcal{B} .
 - 3. $R^B_B < X^B_B \Rightarrow \text{If } X^B_B \text{ insoluble, then } X^B_B = \mathbb{Z}^2_p : (\mathbb{Z}_\ell \circ \text{SL}(2,5)).$
- 4. Consider $\mathcal{K}^B \leq \mathcal{X}^B_B$ and $\mathcal{K} \leq \mathcal{K}^{B_1} \times \ldots \times \mathcal{K}^{B_2}$.
- 5. $R^{\mathcal{B}} \leq X^{\mathcal{B}}$ is transitive and metacyclic.

Thank you!