Self-Complementary Metacirculants

Grant Rao
(joint work with Cai Heng Li and Shu Jiao Song)

The University of Western Australia
July 7, 2014

All graphs are assumed to be finite simple.

- Γ is vertex-transitive if Aut Γ is transitive on V.

All graphs are assumed to be finite simple.

- Γ is vertex-transitive if Aut Γ is transitive on V.
- For a finite group R, let $R^{\#}:=R \backslash\{1\}, S \subseteq R^{\#}$.

All graphs are assumed to be finite simple.

- Γ is vertex-transitive if Aut Γ is transitive on V.
- For a finite group R, let $R^{\#}:=R \backslash\{1\}, S \subseteq R^{\#}$. $\Gamma=\operatorname{Cay}(R, S)$ is a Cayley graph where

$$
\begin{aligned}
& V=R, \\
& E=\left\{(a, b) \mid b a^{-1} \in S\right\}
\end{aligned}
$$

All graphs are assumed to be finite simple.

- Γ is vertex-transitive if Aut Γ is transitive on V.
- For a finite group R, let $R^{\#}:=R \backslash\{1\}, S \subseteq R^{\#}$. $\Gamma=\operatorname{Cay}(R, S)$ is a Cayley graph where

$$
\begin{aligned}
& V=R, \\
& E=\left\{(a, b) \mid b a^{-1} \in S\right\}
\end{aligned}
$$

Γ undirected $\Leftrightarrow S=S^{-1}=\left\{s^{-1} \mid s \in S\right\}$.

All graphs are assumed to be finite simple.

- Γ is vertex-transitive if Aut Γ is transitive on V.
- For a finite group R, let $R^{\#}:=R \backslash\{1\}, S \subseteq R^{\#}$. $\Gamma=\operatorname{Cay}(R, S)$ is a Cayley graph where

$$
\begin{aligned}
& V=R, \\
& E=\left\{(a, b) \mid b a^{-1} \in S\right\}
\end{aligned}
$$

Γ undirected $\Leftrightarrow S=S^{-1}=\left\{s^{-1} \mid s \in S\right\}$.

- A circulant is a Cayley graph of a cyclic group.

All graphs are assumed to be finite simple.

- Γ is vertex-transitive if Aut Γ is transitive on V.
- For a finite group R, let $R^{\#}:=R \backslash\{1\}, S \subseteq R^{\#}$. $\Gamma=\operatorname{Cay}(R, S)$ is a Cayley graph where

$$
\begin{aligned}
& V=R, \\
& E=\left\{(a, b) \mid b a^{-1} \in S\right\}
\end{aligned}
$$

Γ undirected $\Leftrightarrow S=S^{-1}=\left\{s^{-1} \mid s \in S\right\}$.

- A circulant is a Cayley graph of a cyclic group.
- A group R is metacyclic if exists $N \triangleleft R$ such that $N, R / N$ are cyclic. Γ is a metacirculant if $R<A u t \Gamma$ is transitive and metacyclic.

What is a self-complementary vertex-transitive graph?
Γ is called self-complementary $(S C)$ if $\Gamma \cong \bar{\Gamma}$.

What is a self-complementary vertex-transitive graph?

Γ is called self-complementary $(S C)$ if $\Gamma \cong \bar{\Gamma}$.
Self-complementary vertex-transitive (SCVT) graphs are the graphs that are both self-complementary and vertex-transitive.

What is a self-complementary vertex-transitive graph?
Γ is called self-complementary (SC) if $\Gamma \cong \bar{\Gamma}$.

What is a self-complementary vertex-transitive graph?
Γ is called self-complementary (SC) if $\Gamma \cong \bar{\Gamma}$.

What is a self-complementary vertex-transitive graph?
Γ is called self-complementary $(S C)$ if $\Gamma \cong \bar{\Gamma}$.

What is a self-complementary vertex-transitive graph?
Γ is called self-complementary (SC) if $\Gamma \cong \bar{\Gamma}$.

An isomorphism $\sigma: \Gamma \rightarrow \bar{\Gamma}$ is a complementing isomorphism.

What is a self-complementary vertex-transitive graph?

An isomorphism $\sigma: \Gamma \rightarrow \bar{\Gamma}$ is a complementing isomorphism.

- $o(\sigma)=2^{e}$;
- σ does not fix any edge $\Rightarrow 4 \mid o(\sigma)$;
- $\sigma^{2} \in$ Aut $\Gamma \Rightarrow \sigma$ normalises Aut Γ.

$\Gamma=\operatorname{Cay}(R, S)$ is an SCVT-graph.

$$
R=\mathbb{Z}_{3}^{2}, \quad S=\{(0,1),(2,0),(0,2),(1,0)\}
$$

$\Gamma=\operatorname{Cay}(R, S)$ is an SCVT-graph.

$$
R=\mathbb{Z}_{3}^{2}, \quad S=\{(0,1),(2,0),(0,2),(1,0)\}
$$

Define

$$
\sigma=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) \in \mathrm{GL}(2,3)
$$

Then $S^{\sigma}=R^{\#} \backslash S$ and $S \bigcup S^{\sigma}=R^{\#}$.

Background

- (Sachs, 1962) SC-graphs
- properties of SC-graphs
- construction method for SC-graphs
- conditions for the order of SC-circulants

Background

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1(\bmod 4)$.

Background

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1(\bmod 4)$.
- (Rao, 1985) Regular and strongly regular SC-graphs.

Background

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1(\bmod 4)$.
- (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.

Background

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1(\bmod 4)$.
- (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- (Mathon, 1988) Strongly regular SC-graphs
- adjacency matrices
- small order graphs

Background

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1(\bmod 4)$.
- (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- (Mathon, 1988) Strongly regular SC-graphs
- (Fronček, Rosa and Širáň, 1996) (Alspach, Morris and Vilfred, 1999)
The orders of SC-circulants.

Background

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1(\bmod 4)$.
- (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- (Mathon, 1988) Strongly regular SC-graphs
- (Fronček, Rosa and Širáň, 1996) (Alspach, Morris and Vilfred, 1999)
The orders of SC-circulants.
- (Muzychuk, 1999) An SCVT-graph of order n exists $\Leftrightarrow n_{p} \equiv 1(\bmod 4) \forall p$.

Background

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1(\bmod 4)$.
- (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- (Mathon, 1988) Strongly regular SC-graphs
- (Fronček, Rosa and Širáň, 1996)
(Alspach, Morris and Vilfred, 1999)
The orders of SC-circulants.
- (Muzychuk, 1999) An SCVT-graph of order n exists $\Leftrightarrow n_{p} \equiv 1(\bmod 4) \forall p$.
- (Li, Sun and Xu, 2014) SC-circulants of prime-power order.

Background

- (Sachs, 1962) SC-graphs
- (Zelinka, 1979) The order of an SCVT-graph $\equiv 1(\bmod 4)$.
- (Rao, 1985) Regular and strongly regular SC-graphs.
- (Suprunenko, 1985) Construct SC-graphs using group theoretical method.
- (Mathon, 1988) Strongly regular SC-graphs
- (Fronček, Rosa and Širáň, 1996)
(Alspach, Morris and Vilfred, 1999)
The orders of SC-circulants.
- (Muzychuk, 1999) An SCVT-graph of order n exists $\Leftrightarrow n_{p} \equiv 1(\bmod 4) \forall p$.
- (Li, Sun and Xu, 2014) SC-circulants of prime-power order.
- (Li and Rao, 2014) SCVT-graphs of order pq.

Why study SCVT-graphs?

- The diagonal Ramsey number •Example

$$
R(n, n)=\min \left\{|V \Gamma|: \mathrm{K}_{n} \leq \Gamma \text { or } \mathrm{K}_{n} \leq \bar{\Gamma}\right\}
$$

Why study SCVT-graphs?

- The diagonal Ramsey number •Example

$$
R(n, n)=\min \left\{|V \Gamma|: \mathrm{K}_{n} \leq \Gamma \text { or } \mathrm{K}_{n} \leq \bar{\Gamma}\right\}
$$

- The Shannon capacity

$$
\Theta(\Gamma)=\sup _{k} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}=\lim _{k \rightarrow \infty} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}
$$

Why study SCVT-graphs?

- The diagonal Ramsey number •Example

$$
R(n, n)=\min \left\{|V \Gamma|: \mathrm{K}_{n} \leq \Gamma \text { or } \mathrm{K}_{n} \leq \bar{\Gamma}\right\}
$$

- The Shannon capacity

$$
\Theta(\Gamma)=\sup _{k} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}=\lim _{k \rightarrow \infty} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}
$$

$($ Lovász, 1979) $\Theta($ an SCVT-graph of order $n)=\sqrt{n}$.

Why study SCVT-graphs?

- The diagonal Ramsey number •Example

$$
R(n, n)=\min \left\{|V \Gamma|: \mathrm{K}_{n} \leq \Gamma \text { or } \mathrm{K}_{n} \leq \bar{\Gamma}\right\}
$$

- The Shannon capacity

$$
\Theta(\Gamma)=\sup _{k} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}=\lim _{k \rightarrow \infty} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}
$$

(Lovász, 1979) $\Theta($ an SCVT-graph of order $n)=\sqrt{n}$.

- Homogeneous factorisations, transitive orbital decompositions

Why study SCVT-graphs?

- The diagonal Ramsey number •Example

$$
R(n, n)=\min \left\{|V \Gamma|: \mathrm{K}_{n} \leq \Gamma \text { or } \mathrm{K}_{n} \leq \bar{\Gamma}\right\}
$$

- The Shannon capacity

$$
\Theta(\Gamma)=\sup _{k} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}=\lim _{k \rightarrow \infty} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}
$$

(Lovász, 1979) $\Theta($ an SCVT-graph of order $n)=\sqrt{n}$.

- Homogeneous factorisations, transitive orbital decompositions
- (Zhang, 1992) Algebraic characterisation of arc-transitive SC-graphs.
(Peisert, 2000) Classification of arc-transitive SC-graphs.

Why study SCVT-graphs?

- The diagonal Ramsey number •Example

$$
R(n, n)=\min \left\{|V \Gamma|: \mathrm{K}_{n} \leq \Gamma \text { or } \mathrm{K}_{n} \leq \bar{\Gamma}\right\}
$$

- The Shannon capacity

$$
\Theta(\Gamma)=\sup _{k} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}=\lim _{k \rightarrow \infty} \sqrt[k]{\alpha\left(\Gamma^{k}\right)}
$$

(Lovász, 1979) $\Theta($ an SCVT-graph of order $n)=\sqrt{n}$.

- Homogeneous factorisations, transitive orbital decompositions
- (Zhang, 1992) Algebraic characterisation of arc-transitive SC-graphs.
(Peisert, 2000) Classification of arc-transitive SC-graphs.
- (Beezer, 2006) In 50,502,031,367,952 non-isomorphic graphs of order 13, only 2 of them are SCVT.

Construction of Self-Complementary Cayley Graphs

Observation
Let R be a group and $\sigma \in \operatorname{Aut}(R)$. Then

$$
\operatorname{Cay}(R, S) \stackrel{\sigma}{\cong} \operatorname{Cay}\left(R, S^{\sigma}\right)
$$

Construction of Self-Complementary Cayley Graphs

Observation
Let R be a group and $\sigma \in \operatorname{Aut}(R)$. Then

$$
\operatorname{Cay}(R, S) \stackrel{\sigma}{\cong} \operatorname{Cay}\left(R, S^{\sigma}\right) .
$$

If there exists $\sigma \in \operatorname{Aut}(R)$ such that

$$
S^{\sigma}=R^{\#} \backslash S
$$

then

$$
\Gamma=\operatorname{Cay}(R, S) \cong \operatorname{Cay}\left(R, S^{\sigma}\right) \cong \operatorname{Cay}\left(R, R^{\#} \backslash S\right)=\bar{\Gamma}
$$

- Example

Properties of σ

(i) σ does not fix any element of $R^{\#} \Rightarrow \sigma$ is fixed-point-free.
(ii) σ^{2} fixes S and $R^{\#} \backslash S \Rightarrow \sigma^{2} \in$ Aut $\Gamma \Rightarrow \sigma$ normalises Aut Γ.
(iii) $o(\sigma)=2^{e}, e \geq 2$.

Construction 1

1. $\left\langle\sigma^{2}\right\rangle$-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;

Δ_{1}^{+}
Δ_{2}^{+}
Δ_{3}^{+}
Δ_{4}^{+}

Δ_{1}^{-}
Δ_{2}^{-}
Δ_{3}^{-}
Δ_{4}^{-}

Construction 1

1. $\left\langle\sigma^{2}\right\rangle$-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Δ_{1}^{+}
Δ_{2}^{+}
Δ_{3}^{+}
Δ_{4}^{+}

Δ_{1}^{-}
Δ_{2}^{-}
Δ_{3}^{-}
Δ_{4}^{-}

Construction 1

1. $\left\langle\sigma^{2}\right\rangle$-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Construction 1

1. $\left\langle\sigma^{2}\right\rangle$-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Δ_{1}^{+}
Δ_{2}^{+}
Δ_{4}^{+}

Construction 1

1. $\left\langle\sigma^{2}\right\rangle$-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Δ_{1}^{+}
Δ_{2}^{+}
Δ_{4}^{+}

Then $\operatorname{Cay}(R, S)$ is self-complementary.

Construction 1

1. $\left\langle\sigma^{2}\right\rangle$-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Δ_{1}^{+}
Δ_{2}^{+}
Δ_{4}^{+}

Construction 2
Let $p \equiv 1$ or $9(\bmod 40), R=\mathbb{Z}_{p}^{2}$, and let $\sigma \in \mathbf{Z}(\mathrm{GL}(2, p))$ with $8 \mid o(\sigma)$. Let $H=\langle\sigma, \operatorname{SL}(2,5)\rangle, M=\left\langle\sigma^{2}, \operatorname{SL}(2,5)\right\rangle$.

Construction 1

1. $\left\langle\sigma^{2}\right\rangle$-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Construction 2

Let $p \equiv 1$ or $9(\bmod 40), R=\mathbb{Z}_{p}^{2}$, and let $\sigma \in \mathbf{Z}(\mathrm{GL}(2, p))$ with $8 \mid o(\sigma)$. Let $H=\langle\sigma, \operatorname{SL}(2,5)\rangle, M=\left\langle\sigma^{2}, \operatorname{SL}(2,5)\right\rangle$.

1. M-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Construction 1

1. $\left\langle\sigma^{2}\right\rangle$-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Construction 2

Let $p \equiv 1$ or $9(\bmod 40), R=\mathbb{Z}_{p}^{2}$, and let $\sigma \in \mathbf{Z}(\mathrm{GL}(2, p))$ with $8 \mid o(\sigma)$. Let $H=\langle\sigma, \operatorname{SL}(2,5)\rangle, M=\left\langle\sigma^{2}, \operatorname{SL}(2,5)\right\rangle$.

1. M-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .
$\Gamma=\operatorname{Cay}(R, S)$ is an SC-metacirculant with Aut Γ insoluble.

Construction 1

1. $\left\langle\sigma^{2}\right\rangle$-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Construction 2

Let $p \equiv 1$ or $9(\bmod 40), R=\mathbb{Z}_{p}^{2}$, and let $\sigma \in \mathbf{Z}(\mathrm{GL}(2, p))$ with $8 \mid o(\sigma)$. Let $H=\langle\sigma, \operatorname{SL}(2,5)\rangle, M=\left\langle\sigma^{2}, \operatorname{SL}(2,5)\right\rangle$.

1. M-orbits on $R^{\#}: \Delta_{1}^{+}, \Delta_{1}^{-}, \Delta_{2}^{+}, \Delta_{2}^{-}, \ldots, \Delta_{r}^{+}, \Delta_{r}^{-}$where $\left(\Delta_{i}^{+}\right)^{\sigma}=\Delta_{i}^{-}$for each i;
2. $S=\bigcup_{i=1}^{r} \Delta_{i}^{\varepsilon_{i}}$ where $\varepsilon_{i}=+$ or - .

Lemma 3

There exist SC-metacirculants of order $p_{1}^{2} \ldots p_{t}^{2}$ (p_{i} distinct) with Aut $\Gamma \geq \mathbb{Z}_{p_{1} \ldots p_{t}}^{2}:\left(\mathbb{Z}_{\ell} \circ \operatorname{SL}(2,5)^{t}\right)$.

Self-complementary metacirculants

Theorem 4 (Li and Praeger, 2012)
The automorphism group of a self-complementary circulant is soluble.

Self-complementary metacirculants

Theorem 4 (Li and Praeger, 2012)
The automorphism group of a self-complementary circulant is soluble.
The following theorem extends the result.
Theorem 5 (Li, Rao and Song, 2014)
The automorphism group of a self-complementary metacirculant is either soluble, or contains composition factor A_{5}.

Proof of theorem 5

- Γ is a self-complementary metacirculant
- σ is a complementing isomorphism
- $G=A u t \Gamma$
- $X=\langle G, \sigma\rangle=G \cdot \mathbb{Z}_{2}$
- $R<G$ is transitive and metacyclic

Proof of theorem 5

- Γ is a self-complementary metacirculant
- σ is a complementing isomorphism
- $G=$ Aut Γ
- $X=\langle G, \sigma\rangle=G . \mathbb{Z}_{2}$
- $R<G$ is transitive and metacyclic

A block system \mathcal{B} is a nontrivial X-invariant partition of V.
(i) V has no block systems $\Rightarrow X$ is primitive.
(ii) V has a block system $\Rightarrow X$ is imprimitive.

The primitive case

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004) If X is primitive, then
(i) X is affine, or
(ii) X is of product action type with $\operatorname{soc}(X)=\operatorname{PSL}\left(2, q^{2}\right)^{\ell}$.

The primitive case

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004)
If X is primitive, then
(i) X is affine, or
(ii) X is of product action type with $\operatorname{soc}(X)=\operatorname{PSL}\left(2, q^{2}\right)^{\ell}$.

1. R is metacyclic $\Rightarrow X$ is affine of dimension ≤ 2.

The primitive case

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004) If X is primitive, then
(i) X is affine, or
(ii) X is of product action type with $\operatorname{soc}(X)=\operatorname{PSL}\left(2, q^{2}\right)^{\ell}$.

1. R is metacyclic $\Rightarrow X$ is affine of dimension ≤ 2.
2. X is insoluble $\Rightarrow X=\mathbb{Z}_{p}^{2}:\left(\mathbb{Z}_{\ell} \circ \mathrm{SL}(2,5)\right) \quad$ construction

The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:
(i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
(ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq$ Aut Σ and each element of $X^{\mathcal{B}} \backslash G^{\mathcal{B}}$ is its complementing isomorphism.

The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:
(i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
(ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq$ Aut Σ and each element of $X^{\mathcal{B}} \backslash G^{\mathcal{B}}$ is its complementing isomorphism.

1. Let \mathcal{B} be a minimal block system of V.

The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:
(i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
(ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq$ Aut Σ and each element of $X^{\mathcal{B}} \backslash G^{\mathcal{B}}$ is its complementing isomorphism.

1. Let \mathcal{B} be a minimal block system of V.
2. Then $X=K . X^{\mathcal{B}}$, and X_{B}^{B} primitive on B.

The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:
(i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
(ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq$ Aut \sum and each element of $X^{\mathcal{B}} \backslash G^{\mathcal{B}}$ is its complementing isomorphism.

1. Let \mathcal{B} be a minimal block system of V.
2. Then $X=K . X^{\mathcal{B}}$, and X_{B}^{B} primitive on B.
3. $R_{B}^{B}<X_{B}^{B} \Rightarrow$ If X_{B}^{B} insoluble, then $X_{B}^{B}=\mathbb{Z}_{p}^{2}:\left(\mathbb{Z}_{\ell} \circ \operatorname{SL}(2,5)\right)$.

The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:
(i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
(ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq$ Aut \sum and each element of $X^{\mathcal{B}} \backslash G^{\mathcal{B}}$ is its complementing isomorphism.

1. Let \mathcal{B} be a minimal block system of V.
2. Then $X=K \cdot X^{\mathcal{B}}$, and X_{B}^{B} primitive on B.
3. $R_{B}^{B}<X_{B}^{B} \Rightarrow$ If X_{B}^{B} insoluble, then $X_{B}^{B}=\mathbb{Z}_{P}^{2}:\left(\mathbb{Z}_{\ell} \circ \mathrm{SL}(2,5)\right)$.
4. Consider $K^{B} \leq X_{B}^{B}$ and $K \leq K^{B_{1}} \times \ldots \times K^{B_{2}}$.

The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:
(i) $[B]_{\Gamma}$ is self-complementary, $G_{B}^{B} \leq \operatorname{Aut}[B]_{\Gamma}$, and σ^{B} is its complementing isomorphism;
(ii) there is a self-complementary graph Σ with vertex set \mathcal{B} such that $G^{\mathcal{B}} \leq$ Aut \sum and each element of $X^{\mathcal{B}} \backslash G^{\mathcal{B}}$ is its complementing isomorphism.

1. Let \mathcal{B} be a minimal block system of V.
2. Then $X=K \cdot X^{\mathcal{B}}$, and X_{B}^{B} primitive on B.
3. $R_{B}^{B}<X_{B}^{B} \Rightarrow$ If X_{B}^{B} insoluble, then $X_{B}^{B}=\mathbb{Z}_{P}^{2}:\left(\mathbb{Z}_{\ell} \circ \operatorname{SL}(2,5)\right)$.
4. Consider $K^{B} \leq X_{B}^{B}$ and $K \leq K^{B_{1}} \times \ldots \times K^{B_{2}}$.
5. $R^{\mathcal{B}} \leq X^{\mathcal{B}}$ is transitive and metacyclic.

Conjecture 8
Self-complementary metacirculants are Cayley graphs? Pxample

Thank you!

