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All graphs are assumed to be finite simple.
» [ is vertex-transitive if Autl is transitive on V.
» For a finite group R, let R* := R\ {1},S C R*.
I = Cay(R,S) is a Cayley graph where

V =R,
E = {(a,b)|ba~t € S}

I" undirected & S = S71 = {s71|s € S}.
» A circulant is a Cayley graph of a cyclic group.

» A group R is metacyclic if exists N <1 R such that N, R/N are
cyclic. I is a metacirculant if R < Autl is transitive and
metacyclic.
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An isomorphism ¢ : I — T is a complementing isomorphism.



What is a self-complementary vertex-transitive graph?

An isomorphism o : I — T is a complementing isomorphism.
» o(o) =25
» o does not fix any edge = 4 | o(0);
» 02 € Autl” = o normalises Aut/.
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I = Cay(R,S) is an SCVT-graph.

RZZ%? 5 =1{(0,1),(2,0),(0,2),(1,0)}



» Observation

I = Cay(R,S) is an SCVT-graph.
RZZ%? S= {(071)7(270)7(()’2)7(1?0)}

Define
(1! € GL(2,3)
g = 2 1 , .

Then S7 = R#\ S and S|JS? = R¥.
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Why study SCVT-graphs?

» The diagonal Ramsey number »Example

R(n,n) = min{|VI|:K,<T orK,<T}
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The Shannon capacity

O(r) =sup {/a(rk) = lim {/a(rk)

k k—00

(Lovasz, 1979) ©(an SCVT-graph of order n) = \/n.

» Homogeneous factorisations, transitive orbital decompositions

v

(Zhang, 1992) Algebraic characterisation of arc-transitive
SC-graphs.

(Peisert, 2000) Classification of arc-transitive SC-graphs.
(Beezer, 2006) In 50,502,031,367,952 non-isomorphic graphs
of order 13, only 2 of them are SCVT.

v
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Construction of Self-Complementary Cayley Graphs

Observation
Let R be a group and o € Aut(R). Then

Cay(R, S) = Cay(R, 5°).
If there exists o € Aut(R) such that
S = R#\'S,
then

I = Cay(R,S) = Cay(R, S°) = Cay(R,R* \ S) =T.

» Example



Properties of o

(i) o does not fix any element of R* = o is fixed-point-free.
(i) o2 fixes S and R*\'S = 02 € Autl" = o normalises Aut/".
(iii) o(c) =2°,e>2.
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Construction 1
1. (o?)-orbits on R*: A] AT, AT, A, ..., A, A; where
(AF)° = A for each i;
2. S=U;_1 AY wheree; =+ or —.

Af

A7

A7

Then Cay(R, S) is self-complementary.



Construction 1
L <O'2>'Orbl't5 on R# AT? A;u A;—7 A2_7 ey A;i_7 Ar_ where
(AF)" = A for each i;
2. 5= U,(:;l Af" where ; = + or —.

A

Ay

AL

Construction 2
Let p=1or9 (mod 40),R = Z32, and let o € Z(GL(2, p)) with
8|o(c). Let H= (0,SL(2,5)), M = (¢2,SL(2,5)).
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2. S=Ui_ AY wheree; =+ or —.

Construction 2
Let p=1 o0r9 (mod 40),R = Z2, and let o € Z(GL(2, p)) with
8|o(c). Let H= (0,SL(2,5)), M = (¢2,SL(2,5)).
1. M-orbits on R*#: AT, A7, A, A5, ...,AF, A where
(AF)° = A for each i;
2. S=U;_1 AY wheree; =+ or —.

I = Cay(R, S) is an SC-metacirculant with Aut/" insoluble.




Construction 1
1. (o?)-orbits on R*: A AT, AT A, ..., A, A; where
(AF)° = A7 for each i;
2. S=U;_1 AY wheree; =+ or —.

Construction 2
Let p=1 o0r9 (mod 40),R = Z3, and let o € Z(GL(2, p)) with
8 ‘ o(c). Let H = {0,SL(2,5)), M = (¢2,SL(2,5)).
1. M-orbits on R*: AT, A7, A, AS,...,Af, A, where
(AF)° = A for each i;
2. S=U;_ AY wheree; =+ or —.

Lemma 3
There exist SC-metacirculants of order p? ... p? (p; distinct) with

Autl > 72 :(Zg o SL(2,5)").
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Theorem 4 (Li and Praeger, 2012)

The automorphism group of a self~complementary circulant is
soluble.

The following theorem extends the result.

Theorem 5 (Li, Rao and Song, 2014)

The automorphism group of a self~-complementary metacirculant is
either soluble, or contains composition factor As.
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Proof of theorem 5

v

I is a self-complementary metacirculant
> o is a complementing isomorphism

G = Autl"

» X =(G,0) =G.Z

» R < G is transitive and metacyclic

v

A block system B is a nontrivial X-invariant partition of V.
(i) V has no block systems = X is primitive.
(i) V has a block system = X is imprimitive.
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The primitive case

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004)
If X is primitive, then
(i) X is affine, or
(i) X is of product action type with soc(X) = PSL(2, ¢?)".

1. R is metacyclic = X is affine of dimension < 2.
2. X is insoluble = X = Z%:(Zz 0 SL(2,5)) * construction



The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:
(i) [B]r is self-complementary, GE < Aut[B]r, and o8 is its
complementing isomorphism;

(ii) there is a self-complementary graph X with vertex set B such
that GB < AutX and each element of XB\ GB is its
complementing isomorphism.



The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:

(i) [B]r is self-complementary, GE < Aut[B]r, and o8 is its
complementing isomorphism;

(ii) there is a self-complementary graph X with vertex set B such
that GB < AutX and each element of XB\ GB is its
complementing isomorphism.

1. Let B be a minimal block system of V.




The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:
(i) [B]r is self-complementary, GE < Aut[B]r, and o8 is its
complementing isomorphism;

(ii) there is a self-complementary graph X with vertex set B such
that GB < AutX and each element of XB\ GB is its
complementing isomorphism.

1. Let B be a minimal block system of V.
2. Then X = K.XB, and XBB primitive on B.




The imprimitive case

Theorem 7 (Li and Praeger, 2003)

If X is imprimitive, then:

(i)
(ii)

[B]r is self-complementary, GE < Aut[B]r, and o is its
complementing isomorphism;

there is a self-complementary graph X with vertex set B such
that GB < AutX and each element of XB\ GB is its
complementing isomorphism.

1. Let B be a minimal block system of V.
2. Then X = K.XB, and XBB primitive on B.
3. RE < XE = If Xf insoluble, then X5 = Z2:(Z; o SL(2,5)).




The imprimitive case

Theorem 7 (Li and Praeger, 2003)

If X is imprimitive, then:

(i)
(ii)

o

[B]r is self-complementary, GE < Aut[B]r, and o is its
complementing isomorphism;

there is a self-complementary graph X with vertex set B such
that GB < AutX and each element of XB\ GB is its
complementing isomorphism.

Let B be a minimal block system of V.

Then X = K.XB, and XBB primitive on B.

RE < X§ = If XF insoluble, then XB = Z2:(Z; o SL(2,5)).
Consider KB < Xg and K < KB x ... x KBz,



The imprimitive case

Theorem 7 (Li and Praeger, 2003)
If X is imprimitive, then:

(i) [B]r is self-complementary, GE < Aut[B]r, and o8 is its
complementing isomorphism;

(ii) there is a self-complementary graph X with vertex set B such
that GB < AutX and each element of XB\ GB is its
complementing isomorphism.

Let B be a minimal block system of V.

Then X = K.XB, and XBB primitive on B.

RE < X§ = If XF insoluble, then XB = Z2:(Z; o SL(2,5)).
Consider KB < Xg and K < KB x ... x KBz,

RB < XB is transitive and metacyclic. O

o A~ W
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Conjecture 8
Self-complementary metacirculants are Cayley graphs? » Exemple
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