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All graphs are assumed to be finite simple.

I Γ is vertex-transitive if AutΓ is transitive on V .

I For a finite group R, let R# := R \ {1}, S ⊆ R#.

Γ = Cay(R, S) is a Cayley graph where

V = R,

E = {(a, b)|ba−1 ∈ S}

Γ undirected ⇔ S = S−1 = {s−1|s ∈ S}.

I A circulant is a Cayley graph of a cyclic group.

I A group R is metacyclic if exists N C R such that N,R/N are
cyclic. Γ is a metacirculant if R < AutΓ is transitive and
metacyclic.
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What is a self-complementary vertex-transitive graph?

Γ is called self-complementary (SC) if Γ ∼= Γ .

An isomorphism σ : Γ → Γ is a complementing isomorphism.

I o(σ) = 2e ;

I σ does not fix any edge ⇒ 4 | o(σ);

I σ2 ∈ AutΓ ⇒ σ normalises AutΓ .



Observation

Γ = Cay(R, S) is an SCVT-graph.

R = Z2
3, S = {(0, 1), (2, 0), (0, 2), (1, 0)}

Define

σ =

(
1 1
2 1

)
∈ GL(2, 3).

Then Sσ = R# \ S and S
⋃

Sσ = R#. �
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(Alspach, Morris and Vilfred, 1999)
The orders of SC-circulants.

I (Muzychuk, 1999) An SCVT-graph of order n exists
⇔ np ≡ 1 (mod 4) ∀p.

I (Li, Sun and Xu, 2014) SC-circulants of prime-power order.

I (Li and Rao, 2014) SCVT-graphs of order pq.



Background

I (Sachs, 1962) SC-graphs

I (Zelinka, 1979) The order of an SCVT-graph ≡ 1 (mod 4).

I (Rao, 1985) Regular and strongly regular SC-graphs.

I (Suprunenko, 1985) Construct SC-graphs using group
theoretical method.

I (Mathon, 1988) Strongly regular SC-graphs
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(Alspach, Morris and Vilfred, 1999)
The orders of SC-circulants.

I (Muzychuk, 1999) An SCVT-graph of order n exists
⇔ np ≡ 1 (mod 4) ∀p.

I (Li, Sun and Xu, 2014) SC-circulants of prime-power order.

I (Li and Rao, 2014) SCVT-graphs of order pq.



Why study SCVT-graphs?

I The diagonal Ramsey number Example

R(n, n) = min{|V Γ | : Kn ≤ Γ or Kn ≤ Γ}

I The Shannon capacity

Θ(Γ ) = sup
k

k

√
α(Γ k ) = lim

k→∞
k

√
α(Γ k)

(Lovász, 1979) Θ(an SCVT-graph of order n) =
√

n.

I Homogeneous factorisations, transitive orbital decompositions

I (Zhang, 1992) Algebraic characterisation of arc-transitive
SC-graphs.
(Peisert, 2000) Classification of arc-transitive SC-graphs.

I (Beezer, 2006) In 50,502,031,367,952 non-isomorphic graphs
of order 13, only 2 of them are SCVT.
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Construction of Self-Complementary Cayley Graphs

Observation
Let R be a group and σ ∈ Aut(R). Then

Cay(R, S)
σ∼= Cay(R,Sσ).

If there exists σ ∈ Aut(R) such that

Sσ = R# \ S ,

then

Γ = Cay(R,S) ∼= Cay(R,Sσ) ∼= Cay(R,R# \ S) = Γ .

Example
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Properties of σ

(i) σ does not fix any element of R# ⇒ σ is fixed-point-free.

(ii) σ2 fixes S and R# \ S ⇒ σ2 ∈ AutΓ ⇒ σ normalises AutΓ .

(iii) o(σ) = 2e , e ≥ 2.

Construction 1

1. 〈σ2〉-orbits on R#: ∆+
1 ,∆

−
1 ,∆

+
2 ,∆

−
2 , . . . ,∆

+
r ,∆

−
r where

(∆+
i )σ = ∆−i for each i ;

2. S =
⋃r

i=1 ∆εi
i where εi = + or −.
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Self-complementary metacirculants

Theorem 4 (Li and Praeger, 2012)

The automorphism group of a self-complementary circulant is
soluble.

The following theorem extends the result.

Theorem 5 (Li, Rao and Song, 2014)

The automorphism group of a self-complementary metacirculant is
either soluble, or contains composition factor A5.
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Proof of theorem 5

I Γ is a self-complementary metacirculant

I σ is a complementing isomorphism

I G = AutΓ

I X = 〈G , σ〉 = G .Z2

I R < G is transitive and metacyclic

A block system B is a nontrivial X -invariant partition of V .

(i) V has no block systems ⇒ X is primitive.

(ii) V has a block system ⇒ X is imprimitive.
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The primitive case

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004)

If X is primitive, then

(i) X is affine, or

(ii) X is of product action type with soc(X ) = PSL(2, q2)`.

1. R is metacyclic ⇒ X is affine of dimension ≤ 2.

2. X is insoluble ⇒ X = Z2
p:(Z` ◦ SL(2, 5)) construction



The primitive case

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004)

If X is primitive, then

(i) X is affine, or

(ii) X is of product action type with soc(X ) = PSL(2, q2)`.

1. R is metacyclic ⇒ X is affine of dimension ≤ 2.

2. X is insoluble ⇒ X = Z2
p:(Z` ◦ SL(2, 5)) construction



The primitive case

Theorem 6 (Guralnick, Li, Praeger and Saxl, 2004)

If X is primitive, then

(i) X is affine, or

(ii) X is of product action type with soc(X ) = PSL(2, q2)`.

1. R is metacyclic ⇒ X is affine of dimension ≤ 2.

2. X is insoluble ⇒ X = Z2
p:(Z` ◦ SL(2, 5)) construction



The imprimitive case

Theorem 7 (Li and Praeger, 2003)

If X is imprimitive, then:

(i) [B]Γ is self-complementary, G B
B ≤ Aut[B]Γ , and σB is its

complementing isomorphism;

(ii) there is a self-complementary graph Σ with vertex set B such
that GB ≤ AutΣ and each element of XB \ GB is its
complementing isomorphism.

1. Let B be a minimal block system of V .

2. Then X = K .XB, and X B
B primitive on B.

3. RB
B < X B

B ⇒ If X B
B insoluble, then X B

B = Z2
p:(Z` ◦ SL(2, 5)).

4. Consider K B ≤ X B
B and K ≤ K B1 × . . .× K B2 .

5. RB ≤ XB is transitive and metacyclic. �
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Conjecture 8

Self-complementary metacirculants are Cayley graphs? Example



Thank you!
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