Censuses of graphs and maps of certain symmetry types

Primož Potočnik (University of Ljubljana)

SIGMAP, West Malvern, England, July 2014

 $10, {\sf Petersen \ graph}$

14, Heawood

 $8,Q_3$

16, Möbius-Kantor

18, Pappus

 $20, \mathsf{Dodecahedron}$

20, Desargues

24, Nauru

Foster's census of cubic arc-transitive graphs

- These were the first 10 graphs from the Foster census of arc-transitive graphs of valence 3.
- A version of the census was first presented at the "Conference on Graph Theory and Combinatorial Analysis, Waterloo, 1966".
- In 1988, a book was published, containing graphs up to order 512 (some where missing).
- First complete version (up to 768 vertices) was obtained by Conder and Dobcsányi in 2001.
- The census is now extended up to 10000 vertices.
- There are 3815 such graphs (on up to 10000), 1293 of them are 2-arc-transitive, 149 of them are 3-arc-transitive, 20 of them are 4-arc-transitive, and 7 of them are 5-arc-transitive.

The number of cubic arc-transitive graphs

How did Marston do it?!

Marston's method relies on the following result of William Tutte.

Theorem

If Γ is a connected cubic arc-transitive graph, then $|Aut(\Gamma)_v| \leq 48$.

$|\mathrm{Aut}(\Gamma)| \leq 48 |V(\Gamma)|$

How does that help?

Observation

For any given integers k (e.g. k = 3) and m (e.g. m = 48), there exists a finite set T of triples (U, H, a) where U is a finitely presented group generated by a subgroup H and an element a, such that the following holds:

For any connected k-valent graph Γ and any arc-transitive group $G \leq \operatorname{Aut}(\Gamma)$ satisfying $|G_v| \leq m$, there exists a triple $(U, H, a) \in \mathcal{T}$ and an epimorphism $\wp \colon U \to G$, such that:

- \wp maps H isomorphically onto G_v ;
- $\wp(a)$ maps v to a neighbour of v.

Consequence: Every k-valent graph on at most M vertices admitting a G-arc-transitive group satisfying $|G_v| \leq m$ can be obtained as a coset graph $\cos(U/N, HN/N, aN/N)$ for some normal subgroup $N \leq U$ of index at most mM.

Demonstration - cubic case

TASK: Find all connected cubic arc-transitive graphs with at most 30 vertices.

For k = 3 (cubic graphs) and m = 48 (Tutte's bound), we need the set of triples (U, H, a) from the theorem: There are 7 such triples, explicitly determined by Djoković and Miller.

SWITCH TO MAGMA DEMONSTRATION

There are some practical issues:

- Current version of magma computes LINS only up to index $5 \cdot 10^5$;
- For some types of FP groups, computing LINS is VERY hard even for much smaller indices;
- Examples of such groups are $G_1 = C_3 * C_2$ and $G_2^1 = S_3 *_{C_2} C_2^2$.
- G_1 up to index $3 \cdot 10^4$ is harder than G_4^1 up to index $24 \cdot 10^4$.

- Can we use the same approach for arc-transitive graphs of valence 4? Suppose we want to find them all up to *M* vertices.
- Problem: In the 4-valent case, $|Aut(\Gamma)_v|$ is not bounded by a constant.
- But we don't need that! We just need a bound on $|Aut(\Gamma)_v|$ for graphs that have at most M vertices. There certainly is one (say M!).

Bad news

• Consider $W_t = C_t[2K_1]$:

- $|V(\mathbf{W}_t)| = 2t;$
- $|\operatorname{Aut}(W_t)_v| = 2^t$ and so $|\operatorname{Aut}(W_t)| = 2^t \cdot 2t$;
- In order to have $|Aut(W_t)| \le 5 \cdot 10^5$, we need $t \le 15$.
- Not very impressive!

Good idea

• Is this a hopeless project?

• Let's try to "isolate" the problem.

Theorem (Spiga, Verret, PP; "The lost paper")

Let Γ be a connected 4-valent G-arc-transitive graph. Then one of the following occurs:

- Γ is a Praeger-Xu graph or one of a small number of graphs;
- $G_v^{\Gamma(v)}$ is doubly-transitive and $|G_v| \le 2^4 3^6$;
- $|V(\Gamma)| \ge 2|G_v|\log_2(|G_v|/2).$

Let Γ be a 4-valent G-arc-transitive graph. Suppose Γ is not a PX-graph or a sporadic exception. Then one of the following holds

- G_v is 2-transitive on $\Gamma(v)$ and $|G_v| \leq 2^4 3^6$;
 - there are 9 universal triples (U, H, a), "largest" two determined by Weiss (1987) and the "smaller" ones by PP (2009).
 - a census of 2-arc-transitive 4-valent graphs up to 768 vertices was computed in 2009.
- $|G_v| \le 32;$
 - there are 11 universal triples (U, H, a), determined by Djoković (1980).

- All 4-valent arc-transitive graphs on at most 640 vertices are known.
- There is 4820 of such graphs.
- This is more than the number of cubic-arc-transitive graphs on $10\,000$ vertices!

The number of 4-valent arc-transitive graphs

- A similar approach works for arc-transitive digraphs of out-valence 2. (equivalently, 4-valent graphs admitting a half-arc-transitive group action).
- All such digraphs on at most $1\,000$ vertices are known.
- There is 26 457 such digraphs, giving rise to 11 941 underlying graphs. Out of the latter, 8 695 are arc-transitive, and 3 246 are half-arc-transitive.

We extended the Foster census from valence 3 to valence 4. Can we extend it to vertex-transitive graphs of valence 3?

Let Γ be cubic *G*-vertex-transitive, let $v \in V(\Gamma)$, and let $G_v^{\Gamma(v)}$ be the permutation group induced by G_v on $\Gamma(v)$.

- If $G_v^{\Gamma(v)}$ is transitive, then G is arc-transitive. DONE
- If $G_v^{\Gamma(v)}$ is trivial, then G acts regularly on $V(\Gamma)$ and $\Gamma = \operatorname{Cay}(G, S)$. Here $G = |V(\Gamma)| \dots$ small \dots EASY
- If $G_v^{\Gamma(v)} \cong C_2$, then we're in troubles $(|G_v| \text{ can be as big as } 2^{n/4})$. Fortunately, there is a correspondence between suchs graphs on 2n vertices and tetravalent *G*-arc-transitive graphs with $G_v^{\Gamma(v)} \cong D_4$ on n vertices.

- All cubic vertex-transitive graphs up to order 1280 are known.
- There is 111 360 of them.
- Only $1\,434$ of them are non-Cayley.
- Only 482 of them are arc-transitive.

The number of cubic vertex-transitive graphs

Recall : in order to get all 4-valent AT graphs of order up to 640, we had to compute normal subgroups of "small" index of several infinite, finitely presented groups. Among others:

$$U = \langle x, y, a \mid x^2, y^2, a^2, [x, y] \rangle$$

of index at most $4 \cdot 640$. (This corresponds to $G_v \cong V_4$.)

Even though the index is small, applying finding them is computationally difficult!

Is there an alternative way ?

Regular maps

- The group $U = \langle x, a, y \mid x^2, y^2, a^2, [x, y] \rangle$ is related to the notion of regular maps.
- Let $\wp \colon U \to G$ be an epimorphism, and $x = \wp(x)$, $a = \wp(a)$, $y = \wp(y)$.
- Then (G; x, y, a) determines a regular map :
 - vertices: cosets of $\langle a, y \rangle$;
 - edges: cosets of $\langle x, y \rangle$;
 - faces: cosets of $\langle x, a \rangle$;
 - incidence: non-empty intersection;
- To avoid degeneracy, we may require:

•
$$|\langle x, y \rangle| = 4$$

• $a \not\in \langle x, y \rangle$

- Two regular maps (G_i, x_i, y_i, a_i) , i = 1, 2, are isomorphic iff there is an isomorphism $f: G_1 \rightarrow G_2$ s.t. $f(x_1) = x_2$, $f(y_1) = y_2$, and $f(a_1) = a_2$.
- Note: if there is such an *f*, then it is unique.

TASK : Find all regular maps with up to M edges, up to isomorphism.

- Marston (2013) produced a census up to 1 000 edges, using "the standard method". Computations took several months.
- However, there seems to be a quicker method.

Finding regular maps with few edges

- First trick: rather then considering the regular map $G = \langle x, a, y \mid x^2, y^2, a^2, [x, y], \ldots \rangle$, consider the "rotation" subgroup G_0 generated by the R = xa (face rotation) and S = ay (rotation about a vertex).
- Note that $(RS)^2 = 1$ and $R^a = R^{-1}$, $S^a = S^{-1}$. Hence

$$G_0 = \langle R, S \mid (RS)^2, \ldots \rangle.$$

• Note: $|G:G_0| \leq 2$. • If $|G:G_0| = 2$, then (G, x, y, a) is orientable ; • If $|G:G_0| = 1$, then (G, x, y, a) is non-orientable ;

Reconstructing the regular map

- If (G, x, y, a) is orientable, then it can be uniquely constructed from (G_0, R, S) :
 - Consider $G_0 \rtimes \langle a \mid a^2 \rangle$ with $R^a = R^{-1}$ and $S^a = S^{-1}$,
 - let x = Ra and y = aS.
 - Then $(G_0 \rtimes \langle a \rangle, x, y, a)$ is the original regular map.
- If (G, x, y, a) is non-orientable, then (G_0, R, S) does not determine (G, x, y, a) uniquely (even though $G = G_0$).
- Namely, given (G_0, R, S) , there might be several involutions $a \in G_0$, s.t. $R^a = R^{-1}$ and $S^a = S^{-1}$.
- But since we want to find all regular maps, we don't care.

Strategy:

. . .

- Find all triples (G_0, R, S) with $G_0 = \langle R, S \rangle$, $(RS)^2 = 1$, and $|G_0| \le 4M$;
- Determine whether $\iota: R \mapsto R^{-1}$, $\iota: S \mapsto S^{-1}$ extends to an automorphism of G_0 . For those that it does, do the following:
 - Let $G = G_0 \rtimes \langle \iota \rangle$, $a = \iota$, x = Ra, y = aS, and construct the regular map (G, x, y, a). This gives us all orientable regular maps with at most 2M edges.
 - Find all involutions $a \in G_0$, such that $R^a = R^{-1}$, $S^a = S^{-1}$. For each such a, construct the regular map (G_0, Ra, aS, a) . This will give us all non-orientable regular maps with at most M edges.

- If there is no automorphism ι of G_0 mapping (R,S) to (R^{-1},S^{-1}) , then the triple (G_0,R,S) is a chiral map .
 - Vertices: cosets of $\langle S \rangle;$
 - Faces: cosets of $\langle R \rangle$;
 - Edges: cosets of $\langle RS \rangle$;
 - Incidence: non-trivial intersection.
- This gives us all chiral maps on at most 2M edges.

To summarise: If we could find all triples (G, R, S) with $G = \langle R, S \rangle$, $(RS)^2 = 1$, and $|G| \le 4M$, then it would be easy to get all:

- orientable maps with at most 2M edges (both chiral and regular);
- non-orientable maps with at most M edges.

Observe: This task is equivalent to finding all triples (G, R, t) with

$$G = \langle R, t \mid t^2, \ldots \rangle$$

We call such a group G = (2, *)-group.

. . .

Construction a census of (2, *)-groups

The $(2,\ast)\text{-}\mathsf{groups}$ up to order 4M can be constructed inductively:

- First find all such (2, *)-groups that contain no proper non-trivial abelian normal subgroups. These are:
 - cyclic of prime order;
 - (2,*)-groups G satisfying $soc(G) \le G \le Aut(soc(G))$ with soc(G) being a product of non-abelian simple groups.
- Then inductively compute extensions of these by elementary abelian groups, at each step throwing away the extensions that are not (2, *)-groups.
- At each step, one can also find all generating pairs (R, t) of the group G, $t^2 = 1$, up to conjugacy in Aut(G).

- After a few weeks of computations, MAGMA spit out all (2, *)-groups of order up to 6 000 (together with all the generating pairs (R, t)).
- There are $129\,340$ (2,*)-groups of order up to 6000, giving rise to $345\,070$ generating pairs.
- As a result, we obtained a complete list of all:
 - orientable maps with at most 3000 edges (both chiral and regular);
 - $\bullet\,$ non-orientable regular maps with at most $1\,500$ edges.
- We also computed all non-orientable regular maps with up to 3 000 edges that have at least one orientable Wilson's mate.

. . .

Asymptotic enumeration

Primož Potočnik

Censuses

Asymptotic enumeration

$n^{C\log n}$

Theorem (Lubotzky)

There exists a positive constant a such that the number of isomorphism classes of groups which are d-generated and of order at most n is at most $n^{ad \log n}$.

+

For these structures, Aut is bounded by a polynomial function of n (except for a "small" number of exceptions).

Lower bound

For the lower bound, further results are needed:

• (Jaikin-Zapirain) The number $f_d^{[p]}(m)$ of d-generated p-groups of order p^m is:

$$p^{\frac{1}{4}(d-1)m^2 + o(m^2)} \le f_d[p](m) \le p^{\frac{1}{2}(d-1)m^2 + o(m^2)}$$

• (PSV) An analogue result for 2-groups generated by d involutions:

$$2^{\frac{(d-2)^2}{8d}m^2 + o(m^2)} \le g_d[2](m) \le 2^{\frac{1}{2}(d-2)m^2 + o(m^2)}$$

 A paper T. W. Müller and J.-C. Schlage-Puchta, Normal growth of large groups, II, Arch. Math. 84 (2005), 289–291, which implies that for any G-arc-transitive graph (of valence at least 3), there are at least n^{C log n} – D non-equivalent G-admissible regular covering projections of order at most n.