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4, K4 6, K3,3 8, Q3 10, Petersen graph

14, Heawood 16, Möbius-Kantor 18, Pappus

20, Dodecahedron 20, Desargues 24, Nauru
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Foster’s census of cubic arc-transitive graphs

These were the first 10 graphs from the Foster census of arc-transitive
graphs of valence 3.

A version of the census was first presented at the “Conference on
Graph Theory and Combinatorial Analysis, Waterloo, 1966”.

In 1988, a book was published, containing graphs up to order 512
(some where missing ).

First complete version (up to 768 vertices) was obtained by Conder
and Dobcsányi in 2001.

The census is now extended up to 10 000 vertices.

There are 3 815 such graphs (on up to 10 000), 1 293 of them are
2-arc-transitive, 149 of them are 3-arc-transitive, 20 of them are
4-arc-transitive, and 7 of them are 5-arc-transitive.
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The number of cubic arc-transitive graphs
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How did Marston do it?!

Marston’s method relies on the following result of William Tutte.

Theorem

If Γ is a connected cubic arc-transitive graph, then |Aut(Γ)v| ≤ 48.

|Aut(Γ)| ≤ 48|V (Γ)|
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How does that help?

Observation

For any given integers k (e.g. k = 3) and m (e.g. m = 48), there exists a
finite set T of triples (U,H, a) where U is a finitely presented group
generated by a subgroup H and an element a, such that the following
holds:
For any connected k-valent graph Γ and any arc-transitive group
G ≤ Aut(Γ) satisfying |Gv| ≤ m, there exists a triple (U,H, a) ∈ T and
an epimorphism ℘ : U → G, such that:

℘ maps H isomorphically onto Gv;

℘(a) maps v to a neighbour of v.

Consequence: Every k-valent graph on at most M vertices admitting a
G-arc-transitive group satisfying |Gv| ≤ m can be obtained as a coset
graph Cos(U/N,HN/N, aN/N) for some normal subgroup N ≤ U of
index at most mM .
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Demonstration – cubic case

TASK: Find all connected cubic arc-transitive graphs with at most 30
vertices.

For k = 3 (cubic graphs) and m = 48 (Tutte’s bound) , we need the set of
triples (U,H, a) from the theorem: There are 7 such triples, explicitly
determined by Djoković and Miller.

SWITCH TO MAGMA DEMONSTRATION

There are some practical issues:

Current version of magma computes LINS only up to index 5 · 105;

For some types of FP groups, computing LINS is VERY hard even for
much smaller indices;

Examples of such groups are G1 = C3 ∗ C2 and G1
2 = S3 ∗C2 C

2
2 .

G1 up to index 3 · 104 is harder than G1
4 up to index 24 · 104.
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Tetravalent arc-transitive graphs

Can we use the same approach for arc-transitive graphs of valence 4?
Suppose we want to find them all up to M vertices.

Problem: In the 4-valent case, |Aut(Γ)v| is not bounded by a
constant.

But we don’t need that! We just need a bound on |Aut(Γ)v| for
graphs that have at most M vertices. There certainly is one (say M !).
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Bad news

Consider Wt = Ct[2K1]:

|V (Wt)| = 2t;

|Aut(Wt)v| = 2t and so |Aut(Wt)| = 2t · 2t;
In order to have |Aut(Wt)| ≤ 5 · 105, we need t ≤ 15.

Not very impressive!
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Good idea

Is this a hopeless project?

Let’s try to “isolate” the problem.

Theorem (Spiga, Verret, PP; “The lost paper”)

Let Γ be a connected 4-valent G-arc-transitive graph. Then one of the
following occurs:

Γ is a Praeger-Xu graph or one of a small number of graphs;

G
Γ(v)
v is doubly-transitive and |Gv| ≤ 2436;

|V (Γ)| ≥ 2|Gv| log2(|Gv|/2).
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Example: M = 640

Let Γ be a 4-valent G-arc-transitive graph. Suppose Γ is not a PX-graph
or a sporadic exception. Then one of the following holds

Gv is 2-transitive on Γ(v) and |Gv| ≤ 2436;

there are 9 universal triples (U,H, a), “largest” two determined by
Weiss (1987) and the “smaller” ones by PP (2009).

a census of 2-arc-transitive 4-valent graphs up to 768 vertices was
computed in 2009.

|Gv| ≤ 32;

there are 11 universal triples (U,H, a), determined by Djoković (1980).
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A census of 4-valent AT graphs (Spiga, Verret, PP )

All 4-valent arc-transitive graphs on at most 640 vertices are known.

There is 4 820 of such graphs.

This is more than the number of cubic-arc-transitive graphs on 10 000
vertices!
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The number of 4-valent arc-transitive graphs
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A census of 2-out-valent AT digraphs (Spiga, Verret, PP )

A similar approach works for arc-transitive digraphs of out-valence 2.
(equivalently, 4-valent graphs admitting a half-arc-transitive group
action).

All such digraphs on at most 1 000 vertices are known.

There is 26 457 such digraphs, giving rise to 11 941 underlying graphs.
Out of the latter, 8 695 are arc-transitive, and 3 246 are
half-arc-transitive.
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Cubic vertex-transitive graphs

We extended the Foster census from valence 3 to valence 4. Can we
extend it to vertex-transitive graphs of valence 3?

Let Γ be cubic G-vertex-transitive, let v ∈ V (Γ), and let G
Γ(v)
v be the

permutation group induced by Gv on Γ(v).

If G
Γ(v)
v is transitive, then G is arc-transitive. DONE

If G
Γ(v)
v is trivial, then G acts regularly on V (Γ) and Γ = Cay(G,S).

Here G = |V (Γ)| ... small .. EASY

If G
Γ(v)
v
∼= C2, then we’re in troubles (|Gv| can be as big as 2n/4).

Fortunately, there is a correspondence between suchs graphs on 2n

vertices and tetravalent G-arc-transitive graphs with G
Γ(v)
v
∼= D4 on n

vertices.
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A census of cubic VT graphs (Spiga, Verret, PP )

All cubic vertex-transitive graphs up to order 1280 are known.

There is 111 360 of them.

Only 1 434 of them are non-Cayley.

Only 482 of them are arc-transitive.
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The number of cubic vertex-transitive graphs
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Back to 4-valent AT graphs

Recall : in order to get all 4-valent AT graphs of order up to 640, we had
to compute normal subgroups of “small” index of several infinite, finitely
presented groups. Among others:

U = 〈x, y, a | x2, y2, a2, [x, y]〉

of index at most 4 · 640. (This corresponds to Gv
∼= V4.)

Even though the index is small, applying finding them is computationally
difficult!

Is there an alternative way ?
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Regular maps

The group U = 〈x, a, y | x2, y2, a2, [x, y]〉 is related to the notion of
regular maps.

Let ℘ : U → G be an epimorphism, and x = ℘(x), a = ℘(a),
y = ℘(y).

Then (G;x, y, a) determines a regular map :

vertices: cosets of 〈a, y〉;
edges: cosets of 〈x, y〉;
faces: cosets of 〈x, a〉;
incidence: non-empty intersection;

To avoid degeneracy, we may require:

|〈x, y〉| = 4;
a 6∈ 〈x, y〉
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...regular maps...

Two regular maps (Gi, xi, yi, ai), i = 1, 2, are isomorphic iff there is
an isomorphism f : G1 → G2 s.t. f(x1) = x2, f(y1) = y2, and
f(a1) = a2.

Note: if there is such an f , then it is unique.

TASK : Find all regular maps with up to M edges, up to isomorphism.

Marston (2013) produced a census up to 1 000 edges, using “the
standard method”. Computations took several months.

However, there seems to be a quicker method.
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Finding regular maps with few edges

First trick: rather then considering the regular map
G = 〈x, a, y | x2, y2, a2, [x, y], . . .〉, consider the “rotation” subgroup
G0 generated by the R = xa (face rotation) and S = ay (rotation
about a vertex).

Note that (RS)2 = 1 and Ra = R−1, Sa = S−1. Hence

G0 = 〈R,S | (RS)2, . . .〉.

Note: |G : G0| ≤ 2.

If |G : G0| = 2, then (G, x, y, a) is orientable ;
If |G : G0| = 1, then (G, x, y, a) is non-orientable ;
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Reconstructing the regular map

If (G, x, y, a) is orientable, then it can be uniquely constructed from
(G0, R, S):

Consider G0 o 〈a | a2〉 with Ra = R−1 and Sa = S−1,
let x = Ra and y = aS.
Then (G0 o 〈a〉, x, y, a) is the original regular map.

If (G, x, y, a) is non-orientable, then (G0, R, S) does not determine
(G, x, y, a) uniquely (even though G = G0).

Namely, given (G0, R, S), there might be several involutions a ∈ G0,
s.t. Ra = R−1 and Sa = S−1.

But since we want to find all regular maps, we don’t care.
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...

Strategy:

Find all triples (G0, R, S) with G0 = 〈R,S〉, (RS)2 = 1, and
|G0| ≤ 4M ;

Determine whether ι : R 7→ R−1, ι : S 7→ S−1 extends to an
automorphism of G0. For those that it does, do the following:

Let G = G0 o 〈ι〉, a = ι, x = Ra, y = aS, and construct the regular
map (G, x, y, a). This gives us all orientable regular maps with at most
2M edges.

Find all involutions a ∈ G0, such that Ra = R−1, Sa = S−1. For each
such a, construct the regular map (G0, Ra, aS, a). This will give us all
non-orientable regular maps with at most M edges.
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Chiral maps

If there is no automorphism ι of G0 mapping (R,S) to (R−1, S−1),
then the triple (G0, R, S) is a chiral map .

Vertices: cosets of 〈S〉;
Faces: cosets of 〈R〉;
Edges: cosets of 〈RS〉;
Incidence: non-trivial intersection.

This gives us all chiral maps on at most 2M edges.
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...

To summarise: If we could find all triples (G,R, S) with G = 〈R,S〉,
(RS)2 = 1, and |G| ≤ 4M , then it would be easy to get all:

orientable maps with at most 2M edges (both chiral and regular);

non-orientable maps with at most M edges.

Observe: This task is equivalent to finding all triples (G,R, t) with

G = 〈R, t | t2, . . .〉

We call such a group G a (2, ∗)-group.
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Construction a census of (2, ∗)-groups

The (2, ∗)-groups up to order 4M can be constructed inductively:

First find all such (2, ∗)-groups that contain no proper non-trivial
abelian normal subgroups. These are:

cyclic of prime order;
(2, ∗)-groups G satisfying soc(G) ≤ G ≤ Aut(soc(G)) with soc(G)
being a product of non-abelian simple groups.

Then inductively compute extensions of these by elementary abelian
groups, at each step throwing away the extensions that are not
(2, ∗)-groups.

At each step, one can also find all generating pairs (R, t) of the group
G, t2 = 1, up to conjugacy in Aut(G).
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...

After a few weeks of computations, Magma spit out all (2, ∗)-groups
of order up to 6 000 (together with all the generating pairs (R, t)).

There are 129 340 (2, ∗)-groups of order up to 6000, giving rise to
345 070 generating pairs.

As a result, we obtained a complete list of all:

orientable maps with at most 3 000 edges (both chiral and regular);

non-orientable regular maps with at most 1 500 edges.

We also computed all non-orientable regular maps with up to 3 000
edges that have at least one orientable Wilson’s mate.
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The number of regular maps
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Asymptotic enumeration
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Asymptotic enumeration

nC log n
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Upper bound

Theorem (Lubotzky)

There exists a positive constant a such that the number of isomorphism
classes of groups which are d-generated and of order at most n is at most
nad logn.

+

For these structures, Aut is bounded by a polynomial function of n
(except for a “small” number of exceptions).
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Lower bound

For the lower bound, further results are needed:

(Jaikin-Zapirain) The number f
[p]
d (m) of d-generated p-groups of

order pm is:

p
1
4

(d−1)m2+o(m2) ≤ fd[p](m) ≤ p
1
2

(d−1)m2+o(m2).

(PSV) An analogue result for 2-groups generated by d involutions:

2
(d−2)2

8d
m2+o(m2) ≤ gd[2](m) ≤ 2

1
2

(d−2)m2+o(m2)

A paper T. W. Müller and J.-C. Schlage-Puchta, Normal growth of
large groups, II, Arch. Math. 84 (2005), 289–291 , which implies
that for any G-arc-transitive graph (of valence at least 3), there are
at least nC logn −D non-equivalent G-admissible regular covering
projections of order at most n.
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