Censuses of graphs and maps of certain symmetry types

Primož Potočnik
(University of Ljubljana)

SIGMAP, West Malvern, England, July 2014

Foster's census of cubic arc-transitive graphs

- These were the first 10 graphs from the Foster census of arc-transitive graphs of valence 3.
- A version of the census was first presented at the "Conference on Graph Theory and Combinatorial Analysis, Waterloo, 1966" .
- In 1988, a book was published, containing graphs up to order 512 (some where missing).
- First complete version (up to 768 vertices) was obtained by Conder and Dobcsányi in 2001.
- The census is now extended up to 10000 vertices.
- There are 3815 such graphs (on up to 10000), 1293 of them are 2 -arc-transitive, 149 of them are 3 -arc-transitive, 20 of them are 4 -arc-transitive, and 7 of them are 5 -arc-transitive.

The number of cubic arc-transitive graphs

How did Marston do it?!

Marston's method relies on the following result of William Tutte.

Theorem

If Γ is a connected cubic arc-transitive graph, then $\left|\operatorname{Aut}(\Gamma)_{v}\right| \leq 48$.

$$
|\operatorname{Aut}(\Gamma)| \leq 48|V(\Gamma)|
$$

How does that help?

Observation

For any given integers k (e.g. $k=3$) and m (e.g. $m=48$), there exists a finite set \mathcal{T} of triples (U, H, a) where U is a finitely presented group generated by a subgroup H and an element a, such that the following holds:
For any connected k-valent graph Γ and any arc-transitive group $G \leq \operatorname{Aut}(\Gamma)$ satisfying $\left|G_{v}\right| \leq m$, there exists a triple $(U, H, a) \in \mathcal{T}$ and an epimorphism $\wp: U \rightarrow G$, such that:

- \wp maps H isomorphically onto G_{v};
- $\wp(a)$ maps v to a neighbour of v.

Consequence: Every k-valent graph on at most M vertices admitting a G-arc-transitive group satisfying $\left|G_{v}\right| \leq m$ can be obtained as a coset graph $\operatorname{Cos}(U / N, H N / N, a N / N)$ for some normal subgroup $N \leq U$ of index at most $m M$.

Demonstration - cubic case

TASK: Find all connected cubic arc-transitive graphs with at most 30 vertices.

For $k=3$ (cubic graphs) and $m=48$ (Tutte's bound), we need the set of triples (U, H, a) from the theorem: There are 7 such triples, explicitly determined by Djoković and Miller.

SWITCH TO MAGMA DEMONSTRATION

There are some practical issues:

- Current version of magma computes LINS only up to index $5 \cdot 10^{5}$;
- For some types of FP groups, computing LINS is VERY hard even for much smaller indices;
- Examples of such groups are $G_{1}=C_{3} * C_{2}$ and $G_{2}^{1}=S_{3} *_{C_{2}} C_{2}^{2}$.
- G_{1} up to index $3 \cdot 10^{4}$ is harder than G_{4}^{1} up to index $24 \cdot 10^{4}$.

Tetravalent arc-transitive graphs

- Can we use the same approach for arc-transitive graphs of valence 4? Suppose we want to find them all up to M vertices.
- Problem: In the 4 -valent case, $\left|\operatorname{Aut}(\Gamma)_{v}\right|$ is not bounded by a constant.
- But we don't need that! We just need a bound on $\left|\operatorname{Aut}(\Gamma)_{v}\right|$ for graphs that have at most M vertices. There certainly is one (say $M!$).

Bad news

- Consider $\mathrm{W}_{t}=C_{t}\left[2 K_{1}\right]$:

- $\left|V\left(\mathrm{~W}_{t}\right)\right|=2 t$;
- $\left|\operatorname{Aut}\left(\mathrm{W}_{t}\right)_{v}\right|=2^{t}$ and so $\left|\operatorname{Aut}\left(\mathrm{W}_{t}\right)\right|=2^{t} \cdot 2 t$;
- In order to have $\left|\operatorname{Aut}\left(\mathrm{W}_{t}\right)\right| \leq 5 \cdot 10^{5}$, we need $t \leq 15$.
- Not very impressive!

Good idea

- Is this a hopeless project?

- Let's try to "isolate" the problem.

Theorem (Spiga, Verret, PP; "The lost paper")

Let Γ be a connected 4-valent G-arc-transitive graph. Then one of the following occurs:

- Γ is a Praeger-Xu graph or one of a small number of graphs;
- $G_{v}^{\Gamma(v)}$ is doubly-transitive and $\left|G_{v}\right| \leq 2^{4} 3^{6}$;
- $|V(\Gamma)| \geq 2\left|G_{v}\right| \log _{2}\left(\left|G_{v}\right| / 2\right)$.

Example: $M=640$

Let Γ be a 4 -valent G-arc-transitive graph. Suppose Γ is not a PX -graph or a sporadic exception. Then one of the following holds

- G_{v} is 2 -transitive on $\Gamma(v)$ and $\left|G_{v}\right| \leq 2^{4} 3^{6}$;
- there are 9 universal triples (U, H, a), "largest" two determined by Weiss (1987) and the "smaller" ones by PP (2009).
- a census of 2 -arc-transitive 4 -valent graphs up to 768 vertices was computed in 2009.
- $\left|G_{v}\right| \leq 32$;
- there are 11 universal triples (U, H, a), determined by Djoković (1980).

A census of 4 -valent AT graphs
 (Spiga, Verret, PP)

- All 4 -valent arc-transitive graphs on at most 640 vertices are known.
- There is 4820 of such graphs.
- This is more than the number of cubic-arc-transitive graphs on 10000 vertices!

The number of 4-valent arc-transitive graphs

A census of 2-out-valent AT digraphs (Spiga, Verret, PP)

- A similar approach works for arc-transitive digraphs of out-valence 2 . (equivalently, 4 -valent graphs admitting a half-arc-transitive group action).
- All such digraphs on at most 1000 vertices are known.
- There is 26457 such digraphs, giving rise to 11941 underlying graphs. Out of the latter, 8695 are arc-transitive, and 3246 are half-arc-transitive.

Cubic vertex-transitive graphs

We extended the Foster census from valence 3 to valence 4. Can we extend it to vertex-transitive graphs of valence 3?
Let Γ be cubic G-vertex-transitive, let $v \in V(\Gamma)$, and let $G_{v}^{\Gamma(v)}$ be the permutation group induced by G_{v} on $\Gamma(v)$.

- If $G_{v}^{\Gamma(v)}$ is transitive, then G is arc-transitive.
- If $G_{v}^{\Gamma(v)}$ is trivial, then G acts regularly on $V(\Gamma)$ and $\Gamma=\operatorname{Cay}(G, S)$. Here $G=|V(\Gamma)|$... small .. EASY
- If $G_{v}^{\Gamma(v)} \cong C_{2}$, then we're in troubles $\left(\left|G_{v}\right|\right.$ can be as big as $\left.2^{n / 4}\right)$. Fortunately, there is a correspondence between suchs graphs on $2 n$ vertices and tetravalent G-arc-transitive graphs with $G_{v}^{\Gamma(v)} \cong D_{4}$ on n vertices.

A census of cubic VT graphs

(Spiga, Verret, PP)

- All cubic vertex-transitive graphs up to order 1280 are known.
- There is 111360 of them.
- Only 1434 of them are non-Cayley.
- Only 482 of them are arc-transitive.

The number of cubic vertex-transitive graphs

Back to 4 -valent AT graphs

Recall : in order to get all 4 -valent AT graphs of order up to 640 , we had to compute normal subgroups of "small" index of several infinite, finitely presented groups. Among others:

$$
U=\left\langle x, y, a \mid x^{2}, y^{2}, a^{2},[x, y]\right\rangle
$$

of index at most $4 \cdot 640$. (This corresponds to $G_{v} \cong V_{4}$.)
Even though the index is small, applying finding them is computationally difficult!

Is there an alternative way ?

Regular maps

- The group $U=\left\langle x, a, y \mid x^{2}, y^{2}, a^{2},[x, y]\right\rangle$ is related to the notion of regular maps.
- Let $\wp: U \rightarrow G$ be an epimorphism, and $x=\wp(x), a=\wp(a)$, $y=\wp(y)$.
- Then $(G ; x, y, a)$ determines a regular map :
- vertices: cosets of $\langle a, y\rangle$;
- edges: cosets of $\langle x, y\rangle$;
- faces: cosets of $\langle x, a\rangle$;
- incidence: non-empty intersection;
- To avoid degeneracy, we may require:
- $|\langle x, y\rangle|=4$;
- $a \notin\langle x, y\rangle$
- Two regular maps $\left(G_{i}, x_{i}, y_{i}, a_{i}\right), i=1,2$, are isomorphic iff there is an isomorphism $f: G_{1} \rightarrow G_{2}$ s.t. $f\left(x_{1}\right)=x_{2}, f\left(y_{1}\right)=y_{2}$, and $f\left(a_{1}\right)=a_{2}$.
- Note: if there is such an f, then it is unique.

TASK : Find all regular maps with up to M edges, up to isomorphism.

- Marston (2013) produced a census up to 1000 edges, using "the standard method". Computations took several months.
- However, there seems to be a quicker method.

Finding regular maps with few edges

- First trick: rather then considering the regular map $G=\left\langle x, a, y \mid x^{2}, y^{2}, a^{2},[x, y], \ldots\right\rangle$, consider the "rotation" subgroup G_{0} generated by the $R=x a$ (face rotation) and $S=a y$ (rotation about a vertex).
- Note that $(R S)^{2}=1$ and $R^{a}=R^{-1}, S^{a}=S^{-1}$. Hence

$$
G_{0}=\left\langle R, S \mid(R S)^{2}, \ldots\right\rangle
$$

- Note: $\left|G: G_{0}\right| \leq 2$.
- If $\left|G: G_{0}\right|=2$, then (G, x, y, a) is orientable ;
- If $\left|G: G_{0}\right|=1$, then (G, x, y, a) is non-orientable ;

Reconstructing the regular map

- If (G, x, y, a) is orientable, then it can be uniquely constructed from $\left(G_{0}, R, S\right)$:
- Consider $G_{0} \rtimes\left\langle a \mid a^{2}\right\rangle$ with $R^{a}=R^{-1}$ and $S^{a}=S^{-1}$,
- let $x=R a$ and $y=a S$.
- Then $\left(G_{0} \rtimes\langle a\rangle, x, y, a\right)$ is the original regular map.
- If (G, x, y, a) is non-orientable, then $\left(G_{0}, R, S\right)$ does not determine (G, x, y, a) uniquely (even though $G=G_{0}$).
- Namely, given $\left(G_{0}, R, S\right)$, there might be several involutions $a \in G_{0}$, s.t. $R^{a}=R^{-1}$ and $S^{a}=S^{-1}$.
- But since we want to find all regular maps, we don't care.

Strategy:

- Find all triples $\left(G_{0}, R, S\right)$ with $G_{0}=\langle R, S\rangle,(R S)^{2}=1$, and $\left|G_{0}\right| \leq 4 M$;
- Determine whether $\iota: R \mapsto R^{-1}, \iota: S \mapsto S^{-1}$ extends to an automorphism of G_{0}. For those that it does, do the following:
- Let $G=G_{0} \rtimes\langle\iota\rangle, a=\iota, x=R a, y=a S$, and construct the regular map (G, x, y, a). This gives us all orientable regular maps with at most $2 M$ edges.
- Find all involutions $a \in G_{0}$, such that $R^{a}=R^{-1}, S^{a}=S^{-1}$. For each such a, construct the regular map $\left(G_{0}, R a, a S, a\right)$. This will give us all non-orientable regular maps with at most M edges.

Chiral maps

- If there is no automorphism ι of G_{0} mapping (R, S) to $\left(R^{-1}, S^{-1}\right)$, then the triple $\left(G_{0}, R, S\right)$ is a chiral map.
- Vertices: cosets of $\langle S\rangle$;
- Faces: cosets of $\langle R\rangle$;
- Edges: cosets of $\langle R S\rangle$;
- Incidence: non-trivial intersection.
- This gives us all chiral maps on at most $2 M$ edges.

To summarise: If we could find all triples (G, R, S) with $G=\langle R, S\rangle$, $(R S)^{2}=1$, and $|G| \leq 4 M$, then it would be easy to get all:

- orientable maps with at most $2 M$ edges (both chiral and regular);
- non-orientable maps with at most M edges.

Observe: This task is equivalent to finding all triples (G, R, t) with

$$
G=\left\langle R, t \mid t^{2}, \ldots\right\rangle
$$

We call such a group G a $(2, *)$-group.

Construction a census of $(2, *)$-groups

The $(2, *)$-groups up to order $4 M$ can be constructed inductively:

- First find all such $(2, *)$-groups that contain no proper non-trivial abelian normal subgroups. These are:
- cyclic of prime order;
- $(2, *)$-groups G satisfying $\operatorname{soc}(G) \leq G \leq \operatorname{Aut}(\operatorname{soc}(G))$ with $\operatorname{soc}(G)$ being a product of non-abelian simple groups.
- Then inductively compute extensions of these by elementary abelian groups, at each step throwing away the extensions that are not ($2, *$)-groups.
- At each step, one can also find all generating pairs (R, t) of the group $G, t^{2}=1$, up to conjugacy in $\operatorname{Aut}(G)$.
- After a few weeks of computations, Magma spit out all $(2, *)$-groups of order up to 6000 (together with all the generating pairs (R, t)).
- There are $129340(2, *)$-groups of order up to 6000 , giving rise to 345070 generating pairs.
- As a result, we obtained a complete list of all:
- orientable maps with at most 3000 edges (both chiral and regular);
- non-orientable regular maps with at most 1500 edges.
- We also computed all non-orientable regular maps with up to 3000 edges that have at least one orientable Wilson's mate.

The number of regular maps

Asymptotic enumeration

Asymptotic enumeration

$n^{C} \log n$

Upper bound

Theorem (Lubotzky)

There exists a positive constant a such that the number of isomorphism classes of groups which are d-generated and of order at most n is at most $n^{a d \log n}$.

For these structures, Aut is bounded by a polynomial function of n (except for a "small" number of exceptions).

Lower bound

For the lower bound, further results are needed:

- (Jaikin-Zapirain) The number $f_{d}^{[p]}(m)$ of d-generated p-groups of order p^{m} is:

$$
p^{\frac{1}{4}(d-1) m^{2}+o\left(m^{2}\right)} \leq f_{d}[p](m) \leq p^{\frac{1}{2}(d-1) m^{2}+o\left(m^{2}\right)}
$$

- (PSV) An analogue result for 2-groups generated by d involutions:

$$
2^{\frac{(d-2)^{2}}{8 d} m^{2}+o\left(m^{2}\right)} \leq g_{d}[2](m) \leq 2^{\frac{1}{2}(d-2) m^{2}+o\left(m^{2}\right)}
$$

- A paper T. W. Müller and J.-C. Schlage-Puchta, Normal growth of large groups, II, Arch. Math. 84 (2005), 289-291, which implies that for any G-arc-transitive graph (of valence at least 3), there are at least $n^{C \log n}-D$ non-equivalent G-admissible regular covering projections of order at most n.

