

### **Generalised hemicuboctahedron**

**Daniel Pellicer** 

July 2014 – p. 1

## **Regular polygons and polyhedra**

### Antiquity

## **Regular polygons and polyhedra**

#### Antiquity



## **Regular polygons and polyhedra**

### Antiquity



#### Bradwardine

#### Bradwardine



#### Bradwardine



Kepler, Poinsot

#### Bradwardine



#### Kepler, Poinsot





#### Grünbaum



July 2014 – p. 4

#### Grünbaum





July 2014 – p. 4

















### 18 finite regular polyhedra



5 Platonic Solids

- 18 finite regular polyhedra
- 5 Platonic Solids
- 4 Kepler-Poinsot solids

- 18 finite regular polyhedra
- 5 Platonic Solids
- 4 Kepler-Poinsot solids
- 9 Petrials

#### Finite convex regular *n*-polytopes

● *n*-simplex

- *n*-simplex
- *n*-cube

- *n*-simplex
- *n*-cube
- *n*-cross polytope

- *n*-simplex
- *n*-cube
- *n*-cross polytope
- **9** 24-cell (n = 4)

- *n*-simplex
- *n*-cube
- *n*-cross polytope
- **9** 24-cell (n = 4)
- **9** 120-cell (n = 4)

- *n*-simplex
- n-cube
- *n*-cross polytope
- **9** 24-cell (n = 4)
- **9** 120-cell (n = 4)
- **9** 600-cell (n = 4)

Finite convex regular *n*-polytopes

- *n*-simplex
- n-cube
- *n*-cross polytope
- **9** 24-cell (n = 4)
- **9** 120-cell (n = 4)
- **9** 600-cell (n = 4)

#### Schläfli



### • Rank 2 $\longrightarrow$ infinitely many

## **Finite star polytopes**

- Rank 2  $\longrightarrow$  infinitely many
- Rank 3  $\longrightarrow$  4 Kepler-Poinsot polyhedra

- Rank 2  $\longrightarrow$  infinitely many
- Rank 3  $\longrightarrow$  4 Kepler-Poinsot polyhedra
- Rank 4  $\rightarrow$  10 star polytopes

- Rank 2  $\longrightarrow$  infinitely many
- Rank 3  $\longrightarrow$  4 Kepler-Poinsot polyhedra
- Rank 4  $\rightarrow$  10 star polytopes
- E. Hess, S. L. van Oss

### Finite regular *n*-polytopes in $\mathbb{R}^n$

Finite regular *n*-polytopes in  $\mathbb{R}^n$ 

•  $n = 2 \longrightarrow \infty$ 

- Finite regular *n*-polytopes in  $\mathbb{R}^n$
- $n = 2 \longrightarrow \infty$
- $n = 3 \longrightarrow 18$

- Finite regular *n*-polytopes in  $\mathbb{R}^n$
- $\ \, n=2\longrightarrow\infty$
- $n = 3 \longrightarrow 18$

# **Finite regular polytopes**

- Finite regular *n*-polytopes in  $\mathbb{R}^n$
- $\ \, n=2\longrightarrow\infty$
- $n = 3 \longrightarrow 18$
- $\ \, n=4\longrightarrow 34$
- $n \ge 5 \longrightarrow 6$

# **Finite regular polytopes**

- Finite regular *n*-polytopes in  $\mathbb{R}^n$
- $n = 2 \longrightarrow \infty$
- $n = 3 \longrightarrow 18$
- $\ \, n=4\longrightarrow 34$
- $n \ge 5 \longrightarrow 6$

### P. McMullen



#### Rank $n \geq 2$

July 2014 – p. 9

#### Rank $n \geq 2$

### ► Convex hull of $\{\pm e_1, \pm e_2, \ldots, \pm e_n\}$

#### Rank $n \geq 2$

- Convex hull of  $\{\pm e_1, \pm e_2, \ldots, \pm e_n\}$
- ► (k-1)-faces  $\longrightarrow$  subsets of k vertices not containing  $e_i$  and  $-e_i$

#### Rank $n \geq 2$

- ► Convex hull of  $\{\pm e_1, \pm e_2, \ldots, \pm e_n\}$
- ► (k-1)-faces  $\longrightarrow$  subsets of k vertices not containing  $e_i$  and  $-e_i$
- ▶ k-faces are k-simplices ( $k \le n$ )

#### Rank $n \geq 2$

- ► Convex hull of  $\{\pm e_1, \pm e_2, \ldots, \pm e_n\}$
- ► (k-1)-faces  $\longrightarrow$  subsets of k vertices not containing  $e_i$  and  $-e_i$
- ▶ k-faces are k-simplices ( $k \le n$ )
- Geometric dual of the cube





#### • $\mathbb{Z}_2^n \longrightarrow$ changing sign on each coordinate



- $\mathbb{Z}_2^n \longrightarrow$  changing sign on each coordinate
- $S_n \longrightarrow$  permuting the coordinates



Z<sup>n</sup><sub>2</sub> → changing sign on each coordinate
S<sub>n</sub> → permuting the coordinates

#### $\triangleright \mathbb{Z}_2^n \rtimes S_n$



Z<sup>n</sup><sub>2</sub> → changing sign on each coordinate
S<sub>n</sub> → permuting the coordinates

### $\blacktriangleright \mathbb{Z}_2^n \rtimes S_n \cong \mathbb{Z}_2 \wr S_n$



- $\mathbb{Z}_2^n \longrightarrow$  changing sign on each coordinate
- $S_n \longrightarrow$  permuting the coordinates
- $\blacktriangleright \mathbb{Z}_2^n \rtimes S_n \cong \mathbb{Z}_2 \wr S_n$ The Coxeter group  $B_n$

#### Flag $\longrightarrow$ maximal totally ordered subset

### 

- **Flag**  $\longrightarrow$  maximal totally ordered subset ( $\emptyset \subseteq$  vertex  $\subseteq$  edge  $\subseteq \cdots \subseteq$  total)
- Regular polytope  $\longrightarrow$  Symmetry group transitive on flags

- **Flag**  $\longrightarrow$  maximal totally ordered subset ( $\emptyset \subseteq$  vertex  $\subseteq$  edge  $\subseteq \cdots \subseteq$  total)
- **Regular polytope**  $\longrightarrow$  Symmetry group transitive on flags
- Geometric 2-orbit polytope  $\longrightarrow$  Two flag orbits under the symmetry group

**Flag**  $\longrightarrow$  maximal totally ordered subset ( $\emptyset \subseteq$  vertex  $\subseteq$  edge  $\subseteq \cdots \subseteq$  total)

**Regular polytope**  $\longrightarrow$  Symmetry group transitive on flags

Geometric 2-orbit polytope  $\longrightarrow$  Two flag orbits under the symmetry group

Combinatorial 2-orbit polytope  $\longrightarrow$  Two flag orbits under the automorphism group

#### rank 2: all polygons are combiantorially regular

#### rank 2: all polygons are combiantorially regular

rank 3:

July 2014 – p. 12

#### rank 2: all polygons are combiantorially regular

rank 3:

 Cuboctahedron, Icosidodecahedron (convex with regular faces)

rank 2: all polygons are combiantorially regular

rank 3:

- Cuboctahedron, Icosidodecahedron (convex with regular faces)
- Rhombic dodecahedron and rhombic triacontahedron (duals of the previous ones)

rank 2: all polygons are combiantorially regular

rank 3:

- Cuboctahedron, Icosidodecahedron (convex with regular faces)
- Rhombic dodecahedron and rhombic triacontahedron (duals of the previous ones)
- Index 2 polyhedra (Cutler, Schulte)

rank 2: all polygons are combiantorially regular

rank 3:

- Cuboctahedron, Icosidodecahedron (convex with regular faces)
- Rhombic dodecahedron and rhombic triacontahedron (duals of the previous ones)
- Index 2 polyhedra (Cutler, Schulte)
- Maybe others



### ► No full classification in dimension 3



### ► No full classification in dimension 3

#### ▶ No convex of dimension $n \ge 4$ (Matteo)



- ► No full classification in dimension 3
- ▶ No convex of dimension  $n \ge 4$  (Matteo)
- ▶ No convex combinatorially 2-orbit n-polytope for  $n \ge 4$  (Matteo)



















July 2014 – p. 14

## Hemicuboctahedron



#### **Remarks:**

July 2014 – p. 16

### **Remarks:**

• (*n*-Cross polytope)  $\cap \mathbb{R}^{n-1} = (n-1)$ -cross polytope

### Remarks:

- (*n*-Cross polytope)  $\cap \mathbb{R}^{n-1} = (n-1)$ -cross polytope
- The facets of the *n*-cross polytope are (n-1)-simplices

### Remarks:

- (*n*-Cross polytope)  $\cap \mathbb{R}^{n-1} = (n-1)$ -cross polytope
- The facets of the *n*-cross polytope are (n-1)-simplices
- The facets of the *n*-cross polytope admit a bipartition

#### *n*-hemicuboctahedron

• Facets  $\longrightarrow$ 

- Facets  $\longrightarrow$ 
  - Half the simplicial facets of the *n*-Cross polytope

- Facets  $\longrightarrow$ 
  - Half the simplicial facets of the *n*-Cross polytope
  - All (n-1)-cross polytopes from intersections with canonical hyperplanes

- Facets  $\longrightarrow$ 
  - Half the simplicial facets of the *n*-Cross polytope
  - All (n-1)-cross polytopes from intersections with canonical hyperplanes
- The vertex-figures are isomorphic to the (n-1)-hemicuboctahedron

★ Every (simplicial) (n-2)-face belongs to precisely one (n-1)-simplex and to one (n-1)-cross polytope

★ Every (simplicial) (n-2)-face belongs to precisely one (n-1)-simplex and to one (n-1)-cross polytope

★ All flags on simplices are in the same flag-orbit

★ Every (simplicial) (n-2)-face belongs to precisely one (n-1)-simplex and to one (n-1)-cross polytope

★ All flags on simplices are in the same flag-orbit
★ All flags on cross polytopes are in the same flag-orbit

★ Every (simplicial) (n-2)-face belongs to precisely one (n-1)-simplex and to one (n-1)-cross polytope

★ All flags on simplices are in the same flag-orbit
★ All flags on cross polytopes are in the same flag-orbit

★ The quotient of the 4-hemicuboctahedron to the projective space is isomorphic to the Tomotope

# Symmetry group

#### Automorphism group:

# Symmetry group

#### Automorphism group:

•  $(\mathbb{Z}_2^n)^+ \longrightarrow$  changing sign on an even number of coordinates

### Automorphism group:

- $(\mathbb{Z}_2^n)^+ \longrightarrow$  changing sign on an even number of coordinates
- $S_n \longrightarrow$  permuting the coordinates

### Automorphism group:

- $(\mathbb{Z}_2^n)^+ \longrightarrow$  changing sign on an even number of coordinates
- $S_n \longrightarrow$  permuting the coordinates

### $\blacktriangleright$ $(\mathbb{Z}_2^n)^+ \rtimes S_n$

### Automorphism group:

- $(\mathbb{Z}_2^n)^+ \longrightarrow$  changing sign on an even number of coordinates
- $S_n \longrightarrow$  permuting the coordinates

 $\blacktriangleright$   $(\mathbb{Z}_2^n)^+ \rtimes S_n$ The Coxeter group  $D_n$ 

