Generalised hemicuboctahedron

Daniel Pellicer

Regular polygons and polyhedra

Antiquity

Regular polygons and polyhedra

Antiquity

Regular polygons and polyhedra

Antiquity

Star polygons and polyhedra

Bradwardine

Star polygons and polyhedra

Bradwardine

- - -

Star polygons and polyhedra

Bradwardine

Kepler, Poinsot

Star polygons and polyhedra

Bradwardine

- - -

Kepler, Poinsot

Finite regular polyhedra

Grünbaum

Finite regular polyhedra

Grünbaum

Finite regular polyhedra

Grünbaum

Finite regular polyhedra

Grünbaum

Finite regular polyhedra

18 finite regular polyhedra

Finite regular polyhedra

18 finite regular polyhedra

- 5 Platonic Solids

Finite regular polyhedra

18 finite regular polyhedra

- 5 Platonic Solids
- 4 Kepler-Poinsot solids

Finite regular polyhedra

18 finite regular polyhedra

- 5 Platonic Solids
- 4 Kepler-Poinsot solids
- 9 Petrials

Finite regular polytopes

Finite convex regular n-polytopes

Finite regular polytopes

Finite convex regular n-polytopes

- n-simplex

Finite regular polytopes

Finite convex regular n-polytopes

- n-simplex
- n-cube

Finite regular polytopes

Finite convex regular n-polytopes

- n-simplex
- n-cube
- n-cross polytope

Finite regular polytopes

Finite convex regular n-polytopes

- n-simplex
- n-cube
- n-cross polytope
- 24-cell $(n=4)$

Finite regular polytopes

Finite convex regular n-polytopes

- n-simplex
- n-cube
- n-cross polytope
- 24-cell $(n=4)$
- 120-cell $(n=4)$

Finite regular polytopes

Finite convex regular n-polytopes

- n-simplex
- n-cube
- n-cross polytope
- 24-cell $(n=4)$
- 120-cell $(n=4)$
- 600-cell $(n=4)$

Finite regular polytopes

Finite convex regular n-polytopes

- n-simplex
- n-cube
- n-cross polytope
- 24-cell $(n=4)$
- 120-cell $(n=4)$
- 600-cell $(n=4)$

Schläfli

Finite star polytopes

- Rank $2 \longrightarrow$ infinitely many

Finite star polytopes

- Rank $2 \longrightarrow$ infinitely many
- Rank $3 \longrightarrow 4$ Kepler-Poinsot polyhedra

Finite star polytopes

- Rank $2 \longrightarrow$ infinitely many
- Rank $3 \longrightarrow 4$ Kepler-Poinsot polyhedra
- Rank $4 \longrightarrow 10$ star polytopes

Finite star polytopes

- Rank $2 \longrightarrow$ infinitely many
- Rank $3 \longrightarrow 4$ Kepler-Poinsot polyhedra
- Rank $4 \longrightarrow 10$ star polytopes
E. Hess, S. L. van Oss

Finite regular polytopes

Finite regular n-polytopes in \mathbb{R}^{n}

Finite regular polytopes

Finite regular n-polytopes in \mathbb{R}^{n}

- $n=2 \longrightarrow \infty$

Finite regular polytopes

Finite regular n-polytopes in \mathbb{R}^{n}

- $n=2 \longrightarrow \infty$
- $n=3 \longrightarrow 18$

Finite regular polytopes

Finite regular n-polytopes in \mathbb{R}^{n}

- $n=2 \longrightarrow \infty$
- $n=3 \longrightarrow 18$
- $n=4 \longrightarrow 34$

Finite regular polytopes

Finite regular n-polytopes in \mathbb{R}^{n}

- $n=2 \longrightarrow \infty$
- $n=3 \longrightarrow 18$
- $n=4 \longrightarrow 34$
- $n \geq 5 \longrightarrow 6$

Finite regular polytopes

Finite regular n-polytopes in \mathbb{R}^{n}

- $n=2 \longrightarrow \infty$
- $n=3 \longrightarrow 18$
- $n=4 \longrightarrow 34$
- $n \geq 5 \longrightarrow 6$
P. McMullen

Cross polytope

Rank $n \geq 2$

Cross polytope

Rank $n \geq 2$

- Convex hull of $\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{n}\right\}$

Cross polytope

Rank $n \geq 2$

- Convex hull of $\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{n}\right\}$
- (k-1)-faces \longrightarrow subsets of k vertices not containing e_{i} and $-e_{i}$

Cross polytope

Rank $n \geq 2$

- Convex hull of $\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{n}\right\}$
- ($k-1$)-faces \longrightarrow subsets of k vertices not containing e_{i} and $-e_{i}$
- k-faces are k-simplices $(k \leq n)$

Cross polytope

Rank $n \geq 2$
Convex hull of $\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{n}\right\}$

- ($k-1$)-faces \longrightarrow subsets of k vertices not containing e_{i} and $-e_{i}$
- k-faces are k-simplices $(k \leq n)$
- Geometric dual of the cube

Cross polytope

Automorphism group:

Cross polytope

Automorphism group:

- $\mathbb{Z}_{2}^{n} \longrightarrow$ changing sign on each coordinate

Cross polytope

Automorphism group:

- $\mathbb{Z}_{2}^{n} \longrightarrow$ changing sign on each coordinate - $S_{n} \longrightarrow$ permuting the coordinates

Cross polytope

Automorphism group:

- $\mathbb{Z}_{2}^{n} \longrightarrow$ changing sign on each coordinate - $S_{n} \longrightarrow$ permuting the coordinates
- $\mathbb{Z}_{2}^{n} \rtimes S_{n}$

Cross polytope

Automorphism group:

- $\mathbb{Z}_{2}^{n} \longrightarrow$ changing sign on each coordinate - $S_{n} \longrightarrow$ permuting the coordinates
$-\mathbb{Z}_{2}^{n} \rtimes S_{n} \cong \mathbb{Z}_{2} \backslash S_{n}$

Cross polytope

Automorphism group:

- $\mathbb{Z}_{2}^{n} \longrightarrow$ changing sign on each coordinate - $S_{n} \longrightarrow$ permuting the coordinates
- $\mathbb{Z}_{2}^{n} \rtimes S_{n} \cong \mathbb{Z}_{2} \backslash S_{n}$

The Coxeter group B_{n}

2-orbit polytopes

Flag \longrightarrow maximal totally ordered subset

2-orbit polytopes

Flag \longrightarrow maximal totally ordered subset
$(\emptyset \subseteq$ vertex \subseteq edge $\subseteq \cdots \subseteq$ total $)$

2-orbit polytopes

Flag \longrightarrow maximal totally ordered subset
$(\emptyset \subseteq$ vertex \subseteq edge $\subseteq \cdots \subseteq$ total $)$
Regular polytope \longrightarrow Symmetry group transitive on flags

2-orbit polytopes

Flag \longrightarrow maximal totally ordered subset
$(\emptyset \subseteq$ vertex \subseteq edge $\subseteq \cdots \subseteq$ total $)$
Regular polytope \longrightarrow Symmetry group transitive on flags

Geometric 2-orbit polytope \longrightarrow Two flag orbits under the symmetry group

2-orbit polytopes

Flag \longrightarrow maximal totally ordered subset
$(\emptyset \subseteq$ vertex \subseteq edge $\subseteq \cdots \subseteq$ total $)$
Regular polytope \longrightarrow Symmetry group transitive on flags

Geometric 2-orbit polytope \longrightarrow Two flag orbits under the symmetry group

Combinatorial 2-orbit polytope \longrightarrow Two flag orbits under the automorphism group

2-orbit polytopes

rank 2: all polygons are combiantorially regular

2-orbit polytopes

rank 2: all polygons are combiantorially regular
rank 3:

2-orbit polytopes

rank 2: all polygons are combiantorially regular
rank 3:

- Cuboctahedron, Icosidodecahedron (convex with regular faces)

2-orbit polytopes

rank 2: all polygons are combiantorially regular
rank 3:

- Cuboctahedron, Icosidodecahedron (convex with regular faces)
- Rhombic dodecahedron and rhombic triacontahedron (duals of the previous ones)

2-orbit polytopes

rank 2: all polygons are combiantorially regular
rank 3:

- Cuboctahedron, Icosidodecahedron (convex with regular faces)
- Rhombic dodecahedron and rhombic triacontahedron (duals of the previous ones)
- Index 2 polyhedra (Cutler, Schulte)

2-orbit polytopes

rank 2: all polygons are combiantorially regular
rank 3:

- Cuboctahedron, Icosidodecahedron (convex with regular faces)
- Rhombic dodecahedron and rhombic triacontahedron (duals of the previous ones)
- Index 2 polyhedra (Cutler, Schulte)
- Maybe others

2-orbit polytopes

- No full classification in dimension 3

2-orbit polytopes

- No full classification in dimension 3
- No convex of dimension $n \geq 4$ (Matteo)

2-orbit polytopes

- No full classification in dimension 3
- No convex of dimension $n \geq 4$ (Matteo)
- No convex combinatorially 2-orbit n-polytope for $n \geq 4$ (Matteo)

Cuboctahedron

Hemicuboctahedron

Generalised hemicuboctahedron

Remarks:

Generalised hemicuboctahedron

Remarks:

- $(n$-Cross polytope $) \cap \mathbb{R}^{n-1}=(n-1)$-cross polytope

Generalised hemicuboctahedron

Remarks:

- $(n$-Cross polytope $) \cap \mathbb{R}^{n-1}=(n-1)$-cross polytope
- The facets of the n-cross polytope are ($n-1$)-simplices

Generalised hemicuboctahedron

Remarks:

- $(n$-Cross polytope $) \cap \mathbb{R}^{n-1}=(n-1)$-cross polytope
- The facets of the n-cross polytope are ($n-1$)-simplices
- The facets of the n-cross polytope admit a bipartition

Generalised hemicuboctahedron

n-hemicuboctahedron

Generalised hemicuboctahedron

n-hemicuboctahedron

- Facets \longrightarrow

Generalised hemicuboctahedron

n-hemicuboctahedron

- Facets
- Half the simplicial facets of the n-Cross polytope

Generalised hemicuboctahedron

n-hemicuboctahedron

- Facets
- Half the simplicial facets of the n-Cross polytope
- All $(n-1)$-cross polytopes from intersections with canonical hyperplanes

Generalised hemicuboctahedron

n-hemicuboctahedron

- Facets
- Half the simplicial facets of the n-Cross polytope
- All $(n-1)$-cross polytopes from intersections with canonical hyperplanes
- The vertex-figures are isomorphic to the ($n-1$)-hemicuboctahedron

Generalised hemicuboctahedron

* Every (simplicial) $(n-2)$-face belongs to precisely one $(n-1)$-simplex and to one ($n-1$)-cross polytope

Generalised hemicuboctahedron

* Every (simplicial) $(n-2)$-face belongs to precisely one $(n-1)$-simplex and to one ($n-1$)-cross polytope
* All flags on simplices are in the same flag-orbit

Generalised hemicuboctahedron

太 Every (simplicial) $(n-2)$-face belongs to precisely one ($n-1$)-simplex and to one ($n-1$)-cross polytope

* All flags on simplices are in the same flag-orbit \star All flags on cross polytopes are in the same flag-orbit

Generalised hemicuboctahedron

太 Every (simplicial) $(n-2)$-face belongs to precisely one ($n-1$)-simplex and to one ($n-1$)-cross polytope

* All flags on simplices are in the same flag-orbit \star All flags on cross polytopes are in the same flag-orbit
\star The quotient of the 4 -hemicuboctahedron to the projective space is isomorphic to the Tomotope

Symmetry group

Automorphism group:

Symmetry group

Automorphism group:

- $\left(\mathbb{Z}_{2}^{n}\right)^{+} \longrightarrow$ changing sign on an even number of coordinates

Symmetry group

Automorphism group:

- $\left(\mathbb{Z}_{2}^{n}\right)^{+} \longrightarrow$ changing sign on an even number of coordinates
- $S_{n} \longrightarrow$ permuting the coordinates

Symmetry group

Automorphism group:

- $\left(\mathbb{Z}_{2}^{n}\right)^{+} \longrightarrow$ changing sign on an even number of coordinates
- $S_{n} \longrightarrow$ permuting the coordinates
- $\left(\mathbb{Z}_{2}^{n}\right)^{+} \rtimes S_{n}$

Symmetry group

Automorphism group:

- $\left(\mathbb{Z}_{2}^{n}\right)^{+} \longrightarrow$ changing sign on an even number of coordinates
- $S_{n} \longrightarrow$ permuting the coordinates
- $\left(\mathbb{Z}_{2}^{n}\right)^{+} \rtimes S_{n}$

The Coxeter group D_{n}

