Regular Polyhedra in the 3 -Torus.

Antonio Montero Daniel Pellicer

Centro de Ciencias Matemáticas
Universidad Nacional Autonoma de México
Workshop on Symmetries In Graphs, Maps and Polytopes
West Malvern, U.K.
July, 2014

Polyhedra

A polyhedron \mathcal{P} is geometric realization of a connected graph $S k(\mathcal{P})$ (called the 1-skeleton of \mathcal{P}) together with a family of subgraphs of $\operatorname{Sk}(\mathcal{P})$ (called faces) such that:

Polyhedra

A polyhedron \mathcal{P} is geometric realization of a connected graph $S k(\mathcal{P})$ (called the 1-skeleton of \mathcal{P}) together with a family of subgraphs of $\operatorname{Sk}(\mathcal{P})$ (called faces) such that:

- Every face is (isomorphic to) a cycle or an infinite path.

Polyhedra

A polyhedron \mathcal{P} is geometric realization of a connected graph $\operatorname{Sk}(\mathcal{P})$ (called the 1-skeleton of \mathcal{P}) together with a family of subgraphs of $\operatorname{Sk}(\mathcal{P})$ (called faces) such that:

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

Polyhedra

A polyhedron \mathcal{P} is geometric realization of a connected graph $\operatorname{Sk}(\mathcal{P})$ (called the 1-skeleton of \mathcal{P}) together with a family of subgraphs of $\operatorname{Sk}(\mathcal{P})$ (called faces) such that:

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

Polyhedra

A polyhedron \mathcal{P} is geometric realization of a connected graph $\operatorname{Sk}(\mathcal{P})$ (called the 1-skeleton of \mathcal{P}) together with a family of subgraphs of $\operatorname{Sk}(\mathcal{P})$ (called faces) such that:

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

Polyhedra

A polyhedron \mathcal{P} is geometric realization of a connected graph $\operatorname{Sk}(\mathcal{P})$ (called the 1-skeleton of \mathcal{P}) together with a family of subgraphs of $\operatorname{Sk}(\mathcal{P})$ (called faces) such that:

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

Polyhedra

A polyhedron \mathcal{P} is geometric realization of a connected graph $\operatorname{Sk}(\mathcal{P})$ (called the 1-skeleton of \mathcal{P}) together with a family of subgraphs of $\operatorname{Sk}(\mathcal{P})$ (called faces) such that:

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

Polyhedra

Symmetries

- A flag of \mathcal{P} is an incident triplet (vertex, edge, face).

Polyhedra

Symmetries

- A flag of \mathcal{P} is an incident triplet (vertex, edge, face).
- A symmetry of \mathcal{P} is an isometry (of the ambient space) that preserves \mathcal{P}.

Polyhedra

Symmetries

- A flag of \mathcal{P} is an incident triplet (vertex, edge, face).
- A symmetry of \mathcal{P} is an isometry (of the ambient space) that preserves \mathcal{P}.
- \mathcal{P} is regular if its group of symmetries acts transitively on flags.

Regular Polyhedra

Platonic Solids

Regular Polyhedra

Kepler-Poinsot Polyhedra

Regular Polyhedra

Petrie-Coxeter Polyhedra

Regular Polyhedra

Plane Tessellations

Regular Polyhedra

Blended Polyhedra

Regular Polyhedra

Blended Polyhedra

Regular Polyhedra

Blended Polyhedra

Regular Polyhedra

Blended Polyhedra

Regular Polyhedra

Blended Polyhedra

Regular Polyhedra

Classification Theorem

Theorem (Grünbaum-Dress (70's - 80's); McMullen-Schulte (1997))
There exists 48 regular polyhedra in euclidean space \mathbb{E}^{3}.

- 18 finite polyhedra

2 with tetrahedral symmetry.
4 with octahedral symmetry.
12 with icosahedral symmetry.

Regular Polyhedra

Classification Theorem

Theorem (Grünbaum-Dress (70's - 80's); McMullen-Schulte (1997))
There exists 48 regular polyhedra in euclidean space \mathbb{E}^{3}.

- 18 finite polyhedra

2 with tetrahedral symmetry.
4 with octahedral symmetry.
12 with icosahedral symmetry.

- 12 infinte pure polyhedra (which include Petrie-Coxeter polyhedra).

Regular Polyhedra

Classification Theorem

Theorem (Grünbaum-Dress (70's - 80's); McMullen-Schulte (1997))
There exists 48 regular polyhedra in euclidean space \mathbb{E}^{3}.

- 18 finite polyhedra

2 with tetrahedral symmetry.
4 with octahedral symmetry.
12 with icosahedral symmetry.

- 12 infinte pure polyhedra (which include Petrie-Coxeter polyhedra).
- 6 planar polyhedra.

Regular Polyhedra

Classification Theorem

Theorem (Grünbaum-Dress (70's - 80's); McMullen-Schulte (1997))
There exists 48 regular polyhedra in euclidean space \mathbb{E}^{3}.

- 18 finite polyhedra

2 with tetrahedral symmetry.
4 with octahedral symmetry.
12 with icosahedral symmetry.

- 12 infinte pure polyhedra (which include Petrie-Coxeter polyhedra).
- 6 planar polyhedra.
- 12 blended polyhedra.

What is next?

- Higher dimension (rank).

What is next?

- Higher dimension (rank).
- Less symmetry.

What is next?

- Higher dimension (rank).
- Less symmetry.
- Change the ambient space.

The 3-torus

Consider a group $\boldsymbol{\Lambda}$ generated by 3 linearly independent translations of \mathbb{E}^{3}.

The 3 -torus

Consider a group $\boldsymbol{\Lambda}$ generated by 3 linearly independent translations of \mathbb{E}^{3}. The 3-torus associated to $\boldsymbol{\Lambda}$ (denoted by $\mathbb{T}^{3}(\boldsymbol{\Lambda})$) is the quotient space $\mathbb{E}^{3} / \boldsymbol{\Lambda}$.

The problem

Determine the groups $\boldsymbol{\Lambda}$ such that a regular polyhedron in \mathbb{E}^{3} induces a regular polyhedron in $\mathbb{T}^{3}(\boldsymbol{\Lambda})$.

Let $\boldsymbol{\Lambda}$ be a group generated by 3 linearly independent translations by the vectors v_{1}, v_{2} and v_{3}. Let o the origin of \mathbb{E}^{3}, we define de lattice Λ associated to $\boldsymbol{\Lambda}$ as the set

$$
\Lambda=o \boldsymbol{\Lambda}=\left\{n_{1} v_{1}+n_{2} v_{2}+n_{3} v_{3}: n_{i} \in \mathbb{Z}\right\}
$$

Let $\boldsymbol{\Lambda}$ be a group generated by 3 linearly independent translations by the vectors v_{1}, v_{2} and v_{3}. Let o the origin of \mathbb{E}^{3}, we define de lattice Λ associated to $\boldsymbol{\Lambda}$ as the set

$$
\Lambda=o \boldsymbol{\Lambda}=\left\{n_{1} v_{1}+n_{2} v_{2}+n_{3} v_{3}: n_{i} \in \mathbb{Z}\right\}
$$

Some examples:

- Cubic Lattice: $\boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{0}, \mathbf{0})}$.

Let $\boldsymbol{\Lambda}$ be a group generated by 3 linearly independent translations by the vectors v_{1}, v_{2} and v_{3}. Let o the origin of \mathbb{E}^{3}, we define de lattice Λ associated to $\boldsymbol{\Lambda}$ as the set

$$
\Lambda=o \boldsymbol{\Lambda}=\left\{n_{1} v_{1}+n_{2} v_{2}+n_{3} v_{3}: n_{i} \in \mathbb{Z}\right\}
$$

Some examples:

- Cubic Lattice: $\boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{0}, \mathbf{0})}$.
- Body-centred Lattice: $\boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{1}, \mathbf{1})}$.

Let $\boldsymbol{\Lambda}$ be a group generated by 3 linearly independent translations by the vectors v_{1}, v_{2} and v_{3}. Let o the origin of \mathbb{E}^{3}, we define de lattice Λ associated to $\boldsymbol{\Lambda}$ as the set

$$
\Lambda=o \boldsymbol{\Lambda}=\left\{n_{1} v_{1}+n_{2} v_{2}+n_{3} v_{3}: n_{i} \in \mathbb{Z}\right\}
$$

Some examples:

- Cubic Lattice: $\boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{0}, \mathbf{0})}$.
- Body-centred Lattice: $\boldsymbol{\Lambda}_{(\mathbf{1 , 1 , 1})}$.
- Face-centred Lattice: $\boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{1}, \mathbf{0})}$.

Lemma

Let $\boldsymbol{\Lambda}$ a group generated by 3 linearly independent translations. Let $g=t s$ an isometry of \mathbb{E}^{3} (with $s \in O(3)$ and translation). The following are equivalent:

Lemma

Let $\boldsymbol{\Lambda}$ a group generated by 3 linearly independent translations. Let $g=t s$ an isometry of \mathbb{E}^{3} (with $s \in O(3)$ and translation). The following are equivalent:

- g induces an isometry $\bar{g}: \mathbb{T}^{3}(\boldsymbol{\Lambda}) \rightarrow \mathbb{T}^{3}(\boldsymbol{\Lambda})$.

Lemma

Let $\boldsymbol{\Lambda}$ a group generated by 3 linearly independent translations. Let $g=t s$ an isometry of \mathbb{E}^{3} (with $s \in O(3)$ and translation). The following are equivalent:

- g induces an isometry $\bar{g}: \mathbb{T}^{3}(\boldsymbol{\Lambda}) \rightarrow \mathbb{T}^{3}(\boldsymbol{\Lambda})$.

- s preserves Λ.

The results

Tetrahedral Symmetry

Theorem

Let $\boldsymbol{\Lambda}$ be a group generated by 3 linearly independent translations. If \mathcal{P} is a regular polyhedron in \mathbb{E}^{3} with tetrahedral or octahedral symmetry, then \mathcal{P} induces a regular polyhedron in $\mathbb{T}^{3}(\boldsymbol{\Lambda})$ if and only if

$$
\boldsymbol{\Lambda} \in\left\{a \boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{0}, \mathbf{0})}, b \boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{1}, \mathbf{0})}, c \boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{1}, \mathbf{1})}\right\} .
$$

for some parameters a, b, c.

Icosahedral Symmetry

Theorem (Crystallographic Restriction)
If G is a group of isometries in \mathbb{E}^{3} that preserves a lattice, then G does not contain rotations of periods other than $2,3,4$ and 6 .

Icosahedral Symmetry

Theorem (Crystallographic Restriction)
If G is a group of isometries in \mathbb{E}^{3} that preserves a lattice, then G does not contain rotations of periods other than $2,3,4$ and 6 .

Theorem

Let \mathcal{P} be a regular polyhedron in \mathbb{E}^{3} with icosahedral symmetry. There is not group $\boldsymbol{\Lambda}$ generated by 3 linearly independent translations such that \mathcal{P} is a regular polyhedron in $\mathbb{T}^{3}(\boldsymbol{\Lambda})$.

Infinite Polyhedra

... too many vertices ...

Infinite Polyhedra

... too many vertices ...

$\Lambda \leqslant \mathbf{T}(\mathcal{P})$

Pure Polyhedra

Theorem

Let $\boldsymbol{\Lambda}$ be a group generated by 3 linearly independent translations. If \mathcal{P} is an infinite pure regular polyhedron in \mathbb{E}^{3}, then \mathcal{P} induces a regular polyhedron in $\boldsymbol{\Lambda}$ if and only if

$$
\boldsymbol{\Lambda} \in\left\{a \boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{0}, \mathbf{0})}, b \boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{1}, \mathbf{0})}, c \boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{1}, \mathbf{1})}\right\}
$$

for some discrete parameters a, b, c.

Planar and Blended Polyhedra

Planar and Blended Polyhedra

There is a distinguished plane with a planar tessellation associated.

Planar and Blended Polyhedra

$\{4,4\},\{4,4\} \#\{ \}$ and $\{4,4\} \#\{\infty\}$

Planar and Blended Polyhedra

$\{4,4\},\{4,4\} \#\{ \}$ and $\{4,4\} \#\{\infty\}$

Planar and Blended Polyhedra

$\{4,4\},\{4,4\} \#\{ \}$ and $\{4,4\} \#\{\infty\}$

Planar and Blended Polyhedra

$\{4,4\},\{4,4\} \#\{ \}$ and $\{4,4\} \#\{\infty\}$

Planar and Blended Polyhedra

$\{3,6\},\{3,6\} \#\{ \},\{3,6\} \#\{\infty\},\{6,3\},\{6,3\} \#\{ \}$ and $\{6,3\} \#\{\infty\}$

Planar and Blended Polyhedra

$\{3,6\},\{3,6\} \#\{ \},\{3,6\} \#\{\infty\},\{6,3\},\{6,3\} \#\{ \}$ and $\{6,3\} \#\{\infty\}$

Planar and Blended Polyhedra

$\{3,6\},\{3,6\} \#\{ \},\{3,6\} \#\{\infty\},\{6,3\},\{6,3\} \#\{ \}$ and $\{6,3\} \#\{\infty\}$

Planar and Blended Polyhedra

$\{3,6\},\{3,6\} \#\{ \},\{3,6\} \#\{\infty\},\{6,3\},\{6,3\} \#\{ \}$ and $\{6,3\} \#\{\infty\}$

Planar and Blended Polyhedra

$\{3,6\},\{3,6\} \#\{ \},\{3,6\} \#\{\infty\},\{6,3\},\{6,3\} \#\{ \}$ and $\{6,3\} \#\{\infty\}$

Planar Polyhedra

- Coxeter classified the regular maps of the 2 -torus.

Planar Polyhedra

- Coxeter classified the regular maps of the 2 -torus.
- Our results generalize Coxeter's, in the sense that every planar polyhedron in \mathbb{T}^{3} is an embedding of a regular toroidal map.

What have we done and what's next?

- We classify the regular polyhedra in \mathbb{T}^{3} that come from regular polyhedra in \mathbb{E}^{3}.

What have we done and what's next?

- We classify the regular polyhedra in \mathbb{T}^{3} that come from regular polyhedra in \mathbb{E}^{3}.
- Is the list complete?

Thank you!

Figure: $\{4,6 \mid 4\} / \boldsymbol{\Lambda}_{(\mathbf{1}, \mathbf{1}, \mathbf{1})}$

