Regular Polyhedra in the 3-Torus.

Antonio Montero Daniel Pellicer

Centro de Ciencias Matemáticas Universidad Nacional Autonoma de México

Workshop on Symmetries In Graphs, Maps and Polytopes

West Malvern, U.K. July, 2014

A polyhedron \mathcal{P} is geometric realization of a connected graph $Sk(\mathcal{P})$ (called the 1-skeleton of \mathcal{P}) together with a family of subgraphs of $Sk(\mathcal{P})$ (called faces) such that:

• Every face is (isomorphic to) a cycle or an infinite path.

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

- Every face is (isomorphic to) a cycle or an infinite path.
- The vertex-figures are (isomorphic to) cycles.

• A flag of \mathcal{P} is an incident triplet (vertex, edge, face).

- A flag of \mathcal{P} is an incident triplet (vertex, edge, face).
- A symmetry of \mathcal{P} is an isometry (of the ambient space) that preserves \mathcal{P} .

- A flag of \mathcal{P} is an incident triplet (vertex, edge, face).
- A symmetry of \mathcal{P} is an isometry (of the ambient space) that preserves \mathcal{P} .
- \mathcal{P} is regular if its group of symmetries acts transitively on flags.

Platonic Solids

Kepler-Poinsot Polyhedra

Petrie-Coxeter Polyhedra

Plane Tessellations

Classification Theorem

Theorem (Grünbaum-Dress (70's - 80's); McMullen-Schulte (1997))

There exists 48 regular polyhedra in euclidean space \mathbb{E}^3 .

• 18 finite polyhedra

2 with tetrahedral symmetry.
 4 with octahedral symmetry.
 12 with icosahedral symmetry.

Classification Theorem

Theorem (Grünbaum-Dress (70's - 80's); McMullen-Schulte (1997))

There exists 48 regular polyhedra in euclidean space \mathbb{E}^3 .

- 18 finite polyhedra
 - 2 with tetrahedral symmetry.
 4 with octahedral symmetry.
 12 with icosahedral symmetry.

• 12 infinte pure polyhedra (which include Petrie-Coxeter polyhedra).

Classification Theorem

Theorem (Grünbaum-Dress (70's - 80's); McMullen-Schulte (1997))

There exists 48 regular polyhedra in euclidean space \mathbb{E}^3 .

- 18 finite polyhedra
 - 2 with tetrahedral symmetry.
 4 with octahedral symmetry.
 12 with icosahedral symmetry.
- 12 infinte pure polyhedra (which include Petrie-Coxeter polyhedra).
- 6 planar polyhedra.

Classification Theorem

Theorem (Grünbaum-Dress (70's - 80's); McMullen-Schulte (1997))

There exists 48 regular polyhedra in euclidean space \mathbb{E}^3 .

- 18 finite polyhedra
 - 2 with tetrahedral symmetry.
 4 with octahedral symmetry.
 12 with icosahedral symmetry.
- 12 infinte pure polyhedra (which include Petrie-Coxeter polyhedra).
- 6 planar polyhedra.
- 12 blended polyhedra.

What is next?

• Higher dimension (rank).

What is next?

- Higher dimension (rank).
- Less symmetry.

What is next?

- Higher dimension (rank).
- Less symmetry.
- Change the ambient space.

The 3-torus

Consider a group Λ generated by 3 linearly independent translations of \mathbb{E}^3 .

The 3-torus

Consider a group Λ generated by 3 linearly independent translations of \mathbb{E}^3 . The 3-torus associated to Λ (denoted by $\mathbb{T}^3(\Lambda)$) is the quotient space \mathbb{E}^3/Λ .

The problem

Determine the groups Λ such that a regular polyhedron in \mathbb{E}^3 induces a regular polyhedron in $\mathbb{T}^3(\Lambda)$.

$$\Lambda = o\mathbf{\Lambda} = \{n_1v_1 + n_2v_2 + n_3v_3 : n_i \in \mathbb{Z}\}$$

$$\Lambda = o\mathbf{\Lambda} = \{n_1v_1 + n_2v_2 + n_3v_3 : n_i \in \mathbb{Z}\}$$

Some examples:

• Cubic Lattice: $\Lambda_{(1,0,0)}$.

$$\Lambda = o\mathbf{\Lambda} = \{n_1v_1 + n_2v_2 + n_3v_3 : n_i \in \mathbb{Z}\}$$

Some examples:

- Cubic Lattice: $\Lambda_{(1,0,0)}$.
- Body-centred Lattice: $\Lambda_{(1,1,1)}$.

$$\Lambda = o\mathbf{\Lambda} = \{n_1v_1 + n_2v_2 + n_3v_3 : n_i \in \mathbb{Z}\}$$

Some examples:

- Cubic Lattice: $\Lambda_{(1,0,0)}$.
- Body-centred Lattice: $\Lambda_{(1,1,1)}$.
- Face-centred Lattice: $\Lambda_{(1,1,0)}$.

Lemma

Let Λ a group generated by 3 linearly independent translations. Let g = ts an isometry of \mathbb{E}^3 (with $s \in O(3)$ and t translation). The following are equivalent:

Lemma

Let Λ a group generated by 3 linearly independent translations. Let g = ts an isometry of \mathbb{E}^3 (with $s \in O(3)$ and t translation). The following are equivalent:

• g induces an isometry $\bar{g} : \mathbb{T}^3(\mathbf{\Lambda}) \to \mathbb{T}^3(\mathbf{\Lambda})$.

Lemma

Let Λ a group generated by 3 linearly independent translations. Let g = ts an isometry of \mathbb{E}^3 (with $s \in O(3)$ and t translation). The following are equivalent:

• g induces an isometry $\bar{g} : \mathbb{T}^3(\mathbf{\Lambda}) \to \mathbb{T}^3(\mathbf{\Lambda})$.

• s preserves Λ .

The results

Tetrahedral Symmetry

Theorem

Let Λ be a group generated by 3 linearly independent translations. If \mathcal{P} is a regular polyhedron in \mathbb{E}^3 with tetrahedral or octahedral symmetry, then \mathcal{P} induces a regular polyhedron in $\mathbb{T}^3(\Lambda)$ if and only if

$$\mathbf{\Lambda} \in \{a\mathbf{\Lambda}_{(\mathbf{1},\mathbf{0},\mathbf{0})}, b\mathbf{\Lambda}_{(\mathbf{1},\mathbf{1},\mathbf{0})}, c\mathbf{\Lambda}_{(\mathbf{1},\mathbf{1},\mathbf{1})}\}.$$

for some parameters a, b, c.

Icosahedral Symmetry

Theorem (Crystallographic Restriction)

If G is a group of isometries in \mathbb{E}^3 that preserves a lattice, then G does not contain rotations of periods other than 2, 3, 4 and 6.

Theorem (Crystallographic Restriction)

If G is a group of isometries in \mathbb{E}^3 that preserves a lattice, then G does not contain rotations of periods other than 2, 3, 4 and 6.

Theorem

Let \mathcal{P} be a regular polyhedron in \mathbb{E}^3 with icosahedral symmetry. There is not group Λ generated by 3 linearly independent translations such that \mathcal{P} is a regular polyhedron in $\mathbb{T}^3(\Lambda)$.

Infinite Polyhedra

... too many vertices ...

Infinite Polyhedra

... too many vertices ...

$\Lambda \leqslant \mathbf{T}(\mathcal{P})$

Pure Polyhedra

Theorem

Let Λ be a group generated by 3 linearly independent translations. If \mathcal{P} is an infinite pure regular polyhedron in \mathbb{E}^3 , then \mathcal{P} induces a regular polyhedron in Λ if and only if

$$\mathbf{\Lambda} \in \{a\mathbf{\Lambda}_{(\mathbf{1},\mathbf{0},\mathbf{0})}, b\mathbf{\Lambda}_{(\mathbf{1},\mathbf{1},\mathbf{0})}, c\mathbf{\Lambda}_{(\mathbf{1},\mathbf{1},\mathbf{1})}\}.$$

for some discrete parameters a, b, c.

There is a distinguished plane with a planar tessellation associated.

 $\{4,4\},\,\{4,4\}\#\{\}$ and $\{4,4\}\#\{\infty\}$

 $\{4,4\}, \{4,4\}\#\{\} \text{ and } \{4,4\}\#\{\infty\}$

 $\{4,4\},\,\{4,4\}\#\{\}$ and $\{4,4\}\#\{\infty\}$

 $\{4,4\},\ \{4,4\}\#\{\}$ and $\{4,4\}\#\{\infty\}$

Planar Polyhedra

• Coxeter classified the regular maps of the 2-torus.

Planar Polyhedra

- Coxeter classified the regular maps of the 2-torus.
- Our results generalize Coxeter's, in the sense that every planar polyhedron in \mathbb{T}^3 is an embedding of a regular toroidal map.

What have we done and what's next?

• We classify the regular polyhedra in \mathbb{T}^3 that come from regular polyhedra in $\mathbb{E}^3.$

What have we done and what's next?

- We classify the regular polyhedra in \mathbb{T}^3 that come from regular polyhedra in $\mathbb{E}^3.$
- Is the list complete?

Thank you!

Tero, Daniel (CCM - UNAM)