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Regularity is rare, despite its ubiquity

An n-polytope P is regular if Aut(P) is transitive on flags.
But most polytopes of rank n ≥ 3 are not regular.

Eg. The truncated tetrahedron Q,
although quite symmetrical, has
facets of two types (and 3 flag orbits
under the action of Aut(Q) ' S4).
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Now lift to covers ...

• Likewise, a map Q on a compact surface will not usually be regular.

• But it is well-known that Q is covered by a regular map P (usually on
some other surface).

• The regular cover P is unique (to isomorphism) if it covers Q
minimally.

• The proof is straightforward and works for any abstract 3-polytope
(e.g. if Q is a face-to-face tessellation of the plane). In fact,

Aut(P) ' Mon(Q), the monodromy group of Q .

• So it’s crucial that Mon(Q) is a string C-group when rank n = 3.

By the way ...
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Example.

Hartley and Williams (2009) determined the minimal regular cover P for
each classical (convex) Archimedean solid Q in E3.

Here the regular toroidal map P = {6, 3}(2,2) covers the truncated
tetrahedron Q.
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More generally, L. Berman, D. Oliveros, G. Williams and I

now have

Theorem (on the front burner). For n ≥ 2, let Mn = 〈r0, r1, . . . , rn−1〉 be
the monodromy group of the truncated n-simplex. Then
(a) Mn is a string C-group of type {6, 3, . . . , 3}.
(b) Mn is isomorphic to Sn+1 × Sn.
(c) A presentation for Mn comes from adjoining to the standard relations
for Coxeter group with diagram • 6 • • · · · • • (on n nodes) just
one extra magic relation:

(r0r1r0r1r2)4 = e.

(for n ≥ 3). This relation is independent of rank.
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This means

(a) For n ≥ 1, the truncated n-simplex has an essentially unique minimal
regular cover Pn with n! (n + 1)! flags.

(b) For n ≥ 4, Pn is the universal regular polytope for facets of type Pn−1

and simplicial vertex-figures.

(c) Mn is a mix of the sort described in [ARP, 7A12].

(d) And there are related finite, regular polytopes of types {6, 3, . . . , 3},
{3, 6, 3, . . . , 3}, {6, 3, 6, . . . , 3}, etc.
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Let’s continue with covers in general:

• every polytope of small rank n ≤ 2 is (combinatorially=abstractly)
regular, hence equals its own minimal regular cover.

• every (abstract) 3-polytope Q has a unique minimal regular cover P,
and Mon(Q) ' Aut(P).

• So it’s clear (in rank n = 3) that the cover P is finite if-f Q is finite.

• On the other hand, any polytope in any rank n ≥ 2 is covered by the
universal regular n-polytope U = {∞, . . . ,∞}.
• So what about finite covers in higher ranks, i.e. n ≥ 4?
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What happens in higher ranks n ≥ 4?

The natural tool Mon(Q) might fail the needs of polytopality.

Recently, Egon Schulte and I found a fix. From this we are able to prove,
for the first time,

Theorem (2013, to appear in J. Alg. Comb.)
Every finite n-polytope Q is covered by a finite regular n-polytope P.
Moreover, if Q has all its k-faces isomorphic to one particular regular
k-polytope K, then we may choose P to also have such k-faces.
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A 4-dimensional convex example

Suppose Q is the pyramid over a
cuboctahedral base.
Then from our theorem, Q has a
regular cover P of type {12, 12, 12}
and with

253 · 314 · 5 ≈ 2.15× 1023

flags. (This isn’t likely a minimal
cover!)

Apex
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Idea of proof.

• an induction based on rank of regular initial sections in Q
• crucial case is when n-polytope Q has all facets isomorphic to some

regular (n − 1)-polytope K
• in that case, extend K ‘trivially’ to a regular n-polytope K̄ of type
{K, 2}... Thanks ...

• next ‘mix’ to get
G = Mon(Q)♦Aut(K̄)

• then G = Aut(P) for desired regular cover P of Q
(quotient criterion).

• P is finite when Q is finite.
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Many thanks to our organizers!
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Exercise: prove (if you didn’t know it):

For p ≥ 2, the Coxeter group of rank n and diagram

• 2p • 3 • · · · • 3 •

has a subgroup of index

(
n

j + 1

)
which is isomorphic in turn to the

Coxeter group with diagram

• 3 • · · · • 3 •2p• p • 2p • 3 • · · · • 3 • ,

where the first “2p” labels the j th branch of the diagram.
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What is the monodromy group of an n-polytope P?

Any n-polytope P (abstract, convex, ...) satisfies the diamond property :
whenever F < G with rank(F ) = j − 1 and rank(G ) = j + 1 then there
exist exactly two j-faces H with F < H < G

H H’

F

G

j

j+1

j−1

So each flag Φ in P is j-adjacent to a unique flag Φj . Since (Φj)j = Φ,
the mapping rj : Φ 7→ Φj is a fixed-point free involution on the set F(P)
of all flags of P.
The monodromy group Mon(P) = 〈r0, . . . , rn−1〉 is then a subgroup of the
symmetric group on F(P).

Back to covers ...
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What are abstract polytopes?

An abstract n-polytope Q is a poset having some of the key structural
properties of the face lattice of a convex n-polytope, although Q

• need not be a lattice

• need not be finite

• need not have a familiar geometric realization

The abstract 3-polytopes include all convex polyhedra, face-to-face
tessellations and many less familiar structures. But

you can safely think of a finite 3-polytope as a map on a compact surface.

Do we want details?
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The n-polytope Q
is a poset whose elements (= faces) satisfy:

• Q has a unique minimal face F−1 and maximal face Fn

• Every maximal chain or flag has n + 2 faces

so Q has a strictly monotone rank function onto {−1, 0, . . . , n}
• Q is strongly flag connected

via adjacency in the flag graph; this rules out, for example, the
disjoint union of two polyhedra

• Q satisfies the ‘diamond’ condition:

whenever F < G with rank(F ) = j − 1 and rank(G ) = j + 1 there
exist exactly two j-faces H with F < H < G

H H’

F

G

j

j+1

j−1

get back
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The symmetry of Q

is encoded in the group Γ = Γ(Q) of all order-preserving bijections (=
automorphisms) of Q.

Each automorphism is det’d by its action on any one flag Φ; for a
polyhedron, a flag

Φ = incident [vertex, edge, facet] triple

Def. Q is regular if Γ is transitive on flags.

Examples:

• any polygon (n = 2) is (abstractly, i.e. combinatorially) regular

• the usual tiling of E3 by unit cubes is an infinite regular 4-polytope

• the Platonic solids (n = 3).
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The convex regular polyhedra (=Platonic solids) and the
Kepler-Poinsot star-polyhedra P

Local data for both polyhedron P and its group Γ(P) reside in the Schläfli
symbol or type {p, q}.

Platonic solids: {3, 3} (tetrahedron), {3, 4} (octahedron), {4, 3} (cube),
{3, 5} (icosahedron),{5, 3} (dodecahedron)

Kepler (ca. 1619) {52 , 5} (small stellated dodecahedron),
{52 , 3} (great stellated dodecahedron)

Poinsot (ca. 1809) {5, 52} (great dodecahedron),
{3, 52} (great isosahedron)

Barry Monson, University of New Brunswick, (from projects with L.Berman, D.Oliveros, E.Schulte and G.Williams) , SIGMAP, 2014, (supported in part by NSERC)Monodromy Groups of Polytopes



The classical convex regular polytopes, their Schläfli
symbols and finite Coxeter groups with string diagrams

name symbol # facets (Coxeter) group order

n = 4:

simplex {3, 3, 3} 5 A4 ' S5 5!

cross-polytope {3, 3, 4} 16 B4 384

cube {4, 3, 3} 8 B4 384

24-cell {3, 4, 3} 24 F4 1152

600-cell {3, 3, 5} 600 H4 14400

120-cell {5, 3, 3} 120 H4 14400

n > 4:

simplex {3, 3, . . . , 3} n + 1 An ' Sn+1 (n + 1)!
cross-polytope {3, . . . , 3, 4} 2n Bn 2n · n!
cube {4, 3, . . . , 3} 2n Bn 2n · n!
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Regular polytopes and string C-groups

Schulte (1982) showed that the abstract regular n-polytopes P correspond
exactly to the string C-groups of rank n (which we often study in their
place).

The Correspondence Theorem.

Part 1. If P is a regular n-polytope, then Γ(P) = 〈ρ0, . . . , ρn−1〉 is a
string C-group.

Part 2. Conversely, if Γ = 〈ρ0, . . . , ρn−1〉 is a string C-group, then we can
reconstruct an n-polytope P(Γ) (in a natural way as a
coset geometry on Γ).

Furthermore, Γ(P(Γ)) ' Γ and P(Γ(P)) ' P.

Barry Monson, University of New Brunswick, (from projects with L.Berman, D.Oliveros, E.Schulte and G.Williams) , SIGMAP, 2014, (supported in part by NSERC)Monodromy Groups of Polytopes



Recap: what is a string C-group?

Means: having fixed a base flag Φ in P, for 0 ≤ j ≤ n − 1 there is a
unique automorphism ρj ∈ Γ(P) mapping Φ to the j-adjacent flag Φj .
These involutions generate Γ(P) and satisfy the relations implicit in some
string (Coxeter) diagram, like

• p1 • p2 • . . . •pn−1• ,

and perhaps other relations, so long as this intersection condition
continues to hold:

〈ρk : k ∈ I 〉 ∩ 〈ρk : k ∈ J〉 = 〈ρk : k ∈ I ∩ J〉

(for all I , J ⊆ {0, . . . , n − 1}).
Notice that P then has Schläfli type {p1, . . . , pn−1}.
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