Monodromy Groups of Polytopes

Barry Monson, University of New Brunswick

(from projects with L.Berman, D.Oliveros, E.Schulte and G.Williams)

SIGMAP, 2014

(supported in part by NSERC)

Barry Monson, University of New Brunswick, (from projects wi Monodromy Groups of Polytopes

An *n*-polytope \mathcal{P} is regular if $\operatorname{Aut}(\mathcal{P})$ is transitive on flags. But most polytopes of rank $n \geq 3$ are not regular.

Eg. The truncated tetrahedron Q, although quite symmetrical, has facets of two types (and 3 flag orbits under the action of $Aut(Q) \simeq S_4$).

- Likewise, a map Q on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover *P* is unique (to isomorphism) if it covers *Q* minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if (2) is a face to face tessellation of the plane). In fact,
 - $\operatorname{Aut}(\mathcal{P})\simeq\operatorname{Mon}(\mathcal{Q}),$ the monodromy group of $\mathcal Q$
- So it's endal that Mon(Q) is a string C-group when rank n = 3.

▶ By the way …

- Likewise, a map \mathcal{Q} on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map P (usually on some other surface).
 - The regular cover P is unique (to isomorphism) if it covers Q minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if Q is a face-to-face tessellation of the plane). In fact, Aut(P) ≃ Mon(Q), the monodromy group of Q.

Solid's crucial that Mon(Q) is a string C-group when rank n = 3.

▶ By the way ...

- Likewise, a map Q on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover \mathcal{P} is unique (to isomorphism) if it covers \mathcal{Q} minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if Q is a face-to-face tessellation of the plane). In fact, $\operatorname{Aut}(\mathcal{P}) \simeq \operatorname{Mon}(\mathcal{Q})$, the monodromy group of Q.

• So it's crucial that Mon(Q) is a string C-group when rank n = 3.

By the way ..

- Likewise, a map Q on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover \mathcal{P} is unique (to isomorphism) if it covers \mathcal{Q} minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if Q is a face-to-face tessellation of the plane). In fact, Aut(P) ≃ Mon(Q), the monodromy group of Q.

• So it's crucial that $\operatorname{Mon}(\mathcal{Q})$ is a string C-group when rank n=3.

▶ By the way ..

- Likewise, a map ${\mathcal Q}$ on a compact surface will not usually be regular.
- But it is well-known that Q is covered by a regular map \mathcal{P} (usually on some other surface).
- The regular cover \mathcal{P} is unique (to isomorphism) if it covers \mathcal{Q} minimally.
- The proof is straightforward and works for any abstract 3-polytope (e.g. if Q is a face-to-face tessellation of the plane). In fact, Aut(P) ≃ Mon(Q), the monodromy group of Q.
- So it's crucial that Mon(Q) is a string C-group when rank n = 3.

Example.

Hartley and Williams (2009) determined the minimal regular cover \mathcal{P} for each classical (convex) Archimedean solid \mathcal{Q} in \mathbb{E}^3 .

Here the regular toroidal map $\mathcal{P}=\{6,3\}_{(2,2)}$ covers the truncated tetrahedron $\mathcal{Q}.$

UNB

More generally, L. Berman, D. Oliveros, G. Williams and I

now have

Theorem (on the front burner). For $n \ge 2$, let $M_n = \langle r_0, r_1, \ldots, r_{n-1} \rangle$ be the monodromy group of the truncated *n*-simplex. Then

(a) M_n is a string C-group of type $\{6, 3, \ldots, 3\}$.

(b) M_n is isomorphic to $S_{n+1} \times S_n$.

(c) A presentation for M_h comes from adjoining to the standard relations for broader group with diagram $e^{-b} = -e^{-(--)} = e^{-(--)} (on n nodes) just$ one extra magic relation:

$(r_0r_1r_0r_1r_2)^4 = e_{-}$

for $n \ge 3$). This relation is independent of rank.

Theorem (on the front burner). For $n \ge 2$, let $M_n = \langle r_0, r_1, \ldots, r_{n-1} \rangle$ be the monodromy group of the truncated *n*-simplex. Then (a) M_n is a string C-group of type $\{6, 3, \ldots, 3\}$.

(c) A presentation for M_n comes from adjoining to the standard relations for Coxeter group with diagram $\bullet \stackrel{6}{-} \bullet \dots \bullet \bullet \dots \bullet \bullet \bullet$ (on *n* nodes) just one extra magic relation:

 $(r_0r_1r_0r_1r_2)^4 = e.$

(for $n \geq 3$). This relation is independent of rank.

Theorem (on the front burner). For $n \ge 2$, let $M_n = \langle r_0, r_1, \ldots, r_{n-1} \rangle$ be the monodromy group of the truncated *n*-simplex. Then (a) M_n is a string C-group of type $\{6, 3, \ldots, 3\}$. (b) M_n is isomorphic to $S_{n+1} \times S_n$. (c) A presentation for M_n comes from adjoining to the standard relations for Coxeter group with diagram $e^{-6}e^{-4}e^$

 $(r_0r_1r_0r_1r_2)^4 = e.$

(for $n \ge 3$). This relation is independent of rank.

Theorem (on the front burner). For $n \ge 2$, let $M_n = \langle r_0, r_1, \ldots, r_{n-1} \rangle$ be the monodromy group of the truncated *n*-simplex. Then (a) M_n is a string C-group of type $\{6, 3, \ldots, 3\}$. (b) M_n is isomorphic to $S_{n+1} \times S_n$. (c) A presentation for M_n comes from adjoining to the standard relations for Coxeter group with diagram $\bullet \stackrel{6}{-} \bullet - \cdots - \bullet - \bullet \bullet$ (on *n* nodes) just one extra magic relation:

$$(r_0r_1r_0r_1r_2)^4 = e.$$

(for $n \geq 3$). This relation is independent of rank.

Theorem (on the front burner). For $n \ge 2$, let $M_n = \langle r_0, r_1, \ldots, r_{n-1} \rangle$ be the monodromy group of the truncated *n*-simplex. Then (a) M_n is a string C-group of type $\{6, 3, \ldots, 3\}$. (b) M_n is isomorphic to $S_{n+1} \times S_n$. (c) A presentation for M_n comes from adjoining to the standard relations for Coxeter group with diagram $\bullet \stackrel{6}{-} \bullet - \cdots - \bullet - \bullet - \bullet$ (on *n* nodes) just one extra magic relation:

$$(r_0r_1r_0r_1r_2)^4 = e.$$

(for $n \ge 3$). This relation is independent of rank.

(b) For $n \ge 4$, \mathcal{P}_n is the universal regular polytope for facets of type \mathcal{P}_{n-1} and simplicial vertex-figures.

(c) M_n is a mix of the sort described in [ARP, 7A12]

(d) And there are related finite, regular polytopes of types $\{6, 3, \dots, 3\}$, $\{3, 6, 3, \dots, 3\}$, $\{6, 3, 6, \dots, 3\}$, ere

(b) For $n \ge 4$, \mathcal{P}_n is the universal regular polytope for facets of type \mathcal{P}_{n-1} and simplicial vertex-figures.

(c) *M_n* is a mix of the sort described in [ARP, 7A12].

(d) And there are related finite, regular polytopes of types $\{6, 3, ..., 3\}$, $\{3, 6, 3, ..., 3\}$, $\{6, 3, 6, ..., 3\}$, etc.

(b) For $n \ge 4$, \mathcal{P}_n is the universal regular polytope for facets of type \mathcal{P}_{n-1} and simplicial vertex-figures.

(c) M_n is a mix of the sort described in [ARP, 7A12].

(d) And there are related finite, regular polytopes of types {6,3,...,3}, {3,6,3,...,3}, {6,3,6,...,3}, etc.

(b) For $n \ge 4$, \mathcal{P}_n is the universal regular polytope for facets of type \mathcal{P}_{n-1} and simplicial vertex-figures.

(c) M_n is a mix of the sort described in [ARP, 7A12].

(d) And there are related finite, regular polytopes of types $\{6, 3, \ldots, 3\}$, $\{3, 6, 3, \ldots, 3\}$, $\{6, 3, 6, \ldots, 3\}$, etc.

- every polytope of small rank $n \le 2$ is (combinatorially=abstractly) regular, hence equals its own minimal regular cover.
- every (abstract) 3-polytope *Q* has a unique minimal regular cover *P*, and Mon(*Q*) ≃ Aut(*P*).
- So it's clear (in rank n = 3) that the cover \mathcal{P} is finite if-f \mathcal{Q} is finite.
- On the other hand, any polytope in any coak a § 2 is covered by the universal regular a polytope (2 section, co).
- So what about finite covers in higher ranks, i.e. $n \ge 47$

- every polytope of small rank $n \le 2$ is (combinatorially=abstractly) regular, hence equals its own minimal regular cover.
- every (abstract) 3-polytope Q has a unique minimal regular cover P, and Mon(Q) ≃ Aut(P).
- So it's clear (in rank n = 3) that the cover \mathcal{P} is finite if-f \mathcal{Q} is finite.
- On the other hand, any polytope in any rank n ≥ 2 is covered by the universal regular n-polytope U = {∞,...,∞}.
- So what about finite covers in higher ranks, i.e. $n \ge 47$

- every polytope of small rank $n \le 2$ is (combinatorially=abstractly) regular, hence equals its own minimal regular cover.
- every (abstract) 3-polytope Q has a unique minimal regular cover P, and Mon(Q) ≃ Aut(P).
- So it's clear (in rank n = 3) that the cover \mathcal{P} is finite if-f \mathcal{Q} is finite.
- On the other hand, any polytope in any rank n ≥ 2 is covered by the universal regular n-polytope U = {∞,...,∞}.
- So what about finite covers in higher ranks, i.e. n ≥ 4?

- every polytope of small rank $n \le 2$ is (combinatorially=abstractly) regular, hence equals its own minimal regular cover.
- every (abstract) 3-polytope Q has a unique minimal regular cover P, and Mon(Q) ≃ Aut(P).
- So it's clear (in rank n = 3) that the cover \mathcal{P} is finite if-f \mathcal{Q} is finite.
- On the other hand, any polytope in any rank n ≥ 2 is covered by the universal regular n-polytope U = {∞,...,∞}.
- So what about finite covers in higher ranks, i.e. n ≥ 4?

- every polytope of small rank $n \le 2$ is (combinatorially=abstractly) regular, hence equals its own minimal regular cover.
- every (abstract) 3-polytope Q has a unique minimal regular cover P, and Mon(Q) ≃ Aut(P).
- So it's clear (in rank n = 3) that the cover \mathcal{P} is finite if-f \mathcal{Q} is finite.
- On the other hand, any polytope in any rank n ≥ 2 is covered by the universal regular n-polytope U = {∞,...,∞}.
- So what about finite covers in higher ranks, i.e. $n \ge 4$?

- The natural tool $\operatorname{Mon}(Q)$ might fail the needs of polytopality.
- Recently, Egon Schulte and I found a fix. From this we are able to prove, for the first time,
- **Theorem** (2013, to appear in J. Alg. Comb.) Every finite *n*-polytope Q is covered by a finite regular *n*-polytope \mathcal{P} . Moreover, if Q has all its *k*-faces isomorphic to one particular regular *k*-polytope \mathcal{K} , then we may choose \mathcal{P} to also have such *k*-faces.

The natural tool Mon(Q) might fail the needs of polytopality.

Recently, Egon Schulte and I found a fix. From this we are able to prove, for the first time,

Theorem (2013, to appear in J. Alg. Comb.)

Every finite *n*-polytope Q is covered by a finite regular *n*-polytope \mathcal{P} . Moreover, if Q has all its *k*-faces isomorphic to one particular regular *k*-polytope \mathcal{K} , then we may choose \mathcal{P} to also have such *k*-faces. The natural tool Mon(Q) might fail the needs of polytopality.

Recently, Egon Schulte and I found a fix. From this we are able to prove, for the first time,

Theorem (2013, to appear in J. Alg. Comb.) Every finite *n*-polytope Q is covered by a finite regular *n*-polytope \mathcal{P} . Moreover, if Q has all its *k*-faces isomorphic to one particular regular *k*-polytope \mathcal{K} , then we may choose \mathcal{P} to also have such *k*-faces.

- Suppose \mathcal{Q} is the pyramid over a cuboctahedral base.
- Then from our theorem, ${\cal Q}$ has a regular cover ${\cal P}$ of type $\{12,12,12\}$ and with

 $2^{53} \cdot 3^{14} \cdot 5 \approx 2.15 \times 10^{23}$

flags. (This isn't likely a minimal cover!)

- an induction based on rank of regular initial sections in ${\cal Q}$

- crucial case is when n-polytope Q has all facets isomorphic to some regular (n − 1)-polytope K
- in that case, extend *K* 'trivially' to a regular *n*-polytope *K* of type {*K*, 2}... Thanks ...
- next 'mix' to get

 $G = \operatorname{Mon}(\mathcal{Q}) \Diamond \operatorname{Aut}(\tilde{\mathcal{K}})$

 then G = Ant(P) for desired regular cover P of Q (quotient oritorion).

• ${\mathcal P}$ is finite when ${\mathcal Q}$ is finite.

- an induction based on rank of regular initial sections in $\ensuremath{\mathcal{Q}}$
- crucial case is when *n*-polytope Q has all facets isomorphic to some regular (n-1)-polytope K
- in that case, extend *K* 'trivially' to a regular *n*-polytope *K* of type {*K*, 2}... Thanks ...
- next 'mix' to get

 ${\sf G}={
m Mon}({\cal Q})\diamondsuit{
m Aut}(ar{{\cal K}})$

- then G ~ Ant(P) for desired together correc P of Q (quotient oritorion).
- \mathcal{P} is finite when \mathcal{Q} is finite.

- an induction based on rank of regular initial sections in $\ensuremath{\mathcal{Q}}$
- crucial case is when *n*-polytope Q has all facets isomorphic to some regular (n-1)-polytope \mathcal{K}
- in that case, extend \mathcal{K} 'trivially' to a regular *n*-polytope $\bar{\mathcal{K}}$ of type $\{\mathcal{K}, 2\}$... Thanks ...
- next 'mix' to get

 ${\sf G}=\operatorname{Mon}({\cal Q})\diamondsuit\operatorname{Aut}(ar{{\cal K}})$

- then G = Aut(P) for desired regular cover P of Q (quotient criterion).
- \mathcal{P} is finite when \mathcal{Q} is finite.

- an induction based on rank of regular initial sections in $\ensuremath{\mathcal{Q}}$
- crucial case is when *n*-polytope Q has all facets isomorphic to some regular (n-1)-polytope \mathcal{K}
- in that case, extend \mathcal{K} 'trivially' to a regular *n*-polytope $\bar{\mathcal{K}}$ of type $\{\mathcal{K},2\}$... Thanks ...
- next 'mix' to get

$${\sf G}={
m Mon}({\cal Q})\diamondsuit{
m Aut}(ar{{\cal K}})$$

- then G = Aut(P) for desired regular cover P of Q (quotient criterion).
- \mathcal{P} is finite when \mathcal{Q} is finite.

- an induction based on rank of regular initial sections in $\ensuremath{\mathcal{Q}}$
- crucial case is when *n*-polytope Q has all facets isomorphic to some regular (n-1)-polytope \mathcal{K}
- in that case, extend \mathcal{K} 'trivially' to a regular *n*-polytope $\bar{\mathcal{K}}$ of type $\{\mathcal{K},2\}$... Thanks ...
- next 'mix' to get

$${\mathcal G} = \operatorname{Mon}({\mathcal Q}) \diamondsuit \operatorname{Aut}(ar{{\mathcal K}})$$

- then G = Aut(P) for desired regular cover P of Q (quotient criterion).
- ${\mathcal P}$ is finite when ${\mathcal Q}$ is finite.

- \bullet an induction based on rank of regular initial sections in ${\cal Q}$
- crucial case is when *n*-polytope Q has all facets isomorphic to some regular (n-1)-polytope K
- in that case, extend ${\cal K}$ 'trivially' to a regular n-polytope $\bar{\cal K}$ of type $\{{\cal K},2\}...$ Thanks ...
- next 'mix' to get

$$G = \operatorname{Mon}(\mathcal{Q}) \diamondsuit \operatorname{Aut}(\bar{\mathcal{K}})$$

- then G = Aut(P) for desired regular cover P of Q (quotient criterion).
- \mathcal{P} is finite when \mathcal{Q} is finite.

Many thanks to our organizers!

[1] L. Berman, M. Mixer, B. Monson, D. Oliveros and G. Williams, *The monodromy group of the n-pyramid*, Discrete Mathematics, 2014.

[2] P. McMullen and E. Schulte, *Abstract Regular Polytopes*, Encyclopedia of Mathematics and its Applications, **92**, Cambridge University Press, Cambridge, 2002.

[3] B. Monson and E. Schulte, *Finite Polytopes have Finite Regular Covers*, Journal of Algebraic Combinatorics, 2013.

[4] B.Monson, D. Pellicer and G. Williams, *Mixing and Monodromy of Abstract Polytopes*, Trans. AMS., 2014.

Exercise: prove (if you didn't know it):

For $p \ge 2$, the Coxeter group of rank n and diagram

$$\bullet \frac{2p}{2p} \bullet \frac{3}{2} \bullet \dots \bullet \frac{3}{2} \bullet$$

has a subgroup of index $\binom{n}{j+1}$ which is isomorphic in turn to the

Coxeter group with diagram

$$\underbrace{3}{\bullet} \underbrace{-\cdots}{\bullet} \underbrace{3}{\bullet} \underbrace{2p}{\bullet} \underbrace{p}{\bullet} \underbrace{2p}{\bullet} \underbrace{3}{\bullet} \underbrace{-\cdots}{\bullet} \underbrace{-\cdots}{\bullet} \underbrace{3}{\bullet} \underbrace{-\cdots}{\bullet} \underbrace{-\cdots}{\bullet} \underbrace{3}{\bullet} \underbrace{-\cdots}{\bullet} \underbrace$$

where the first "2p" labels the *j* th branch of the diagram.

What is the monodromy group of an *n*-polytope \mathcal{P} ?

Any *n*-polytope \mathcal{P} (abstract, convex, ...) satisfies the *diamond property*: whenever F < G with rank(F) = j - 1 and rank(G) = j + 1 then there exist exactly two *j*-faces *H* with F < H < G

So each flag Φ in \mathcal{P} is *j*-adjacent to a unique flag Φ^j . Since $(\Phi^j)^j = \Phi$, the mapping $r_j : \Phi \mapsto \Phi^j$ is a fixed-point free involution on the set $\mathcal{F}(\mathcal{P})$ of all flags of \mathcal{P} .

The monodromy group $Mon(\mathcal{P}) = \langle r_0, \dots, r_{n-1} \rangle$ is then a subgroup of the symmetric group on $\mathcal{F}(\mathcal{P})$.

What is the monodromy group of an *n*-polytope \mathcal{P} ?

Any *n*-polytope \mathcal{P} (abstract, convex, ...) satisfies the *diamond property*: whenever F < G with rank(F) = j - 1 and rank(G) = j + 1 then there exist exactly two *j*-faces *H* with F < H < G

So each flag Φ in \mathcal{P} is *j*-adjacent to a unique flag Φ^j . Since $(\Phi^j)^j = \Phi$, the mapping $r_j : \Phi \mapsto \Phi^j$ is a fixed-point free involution on the set $\mathcal{F}(\mathcal{P})$ of all flags of \mathcal{P} .

The monodromy group $Mon(\mathcal{P}) = \langle r_0, \dots, r_{n-1} \rangle$ is then a subgroup of the symmetric group on $\mathcal{F}(\mathcal{P})$.

What is the monodromy group of an *n*-polytope \mathcal{P} ?

Any *n*-polytope \mathcal{P} (abstract, convex, ...) satisfies the *diamond property*: whenever F < G with rank(F) = j - 1 and rank(G) = j + 1 then there exist exactly two *j*-faces *H* with F < H < G

So each flag Φ in \mathcal{P} is *j*-adjacent to a unique flag Φ^j . Since $(\Phi^j)^j = \Phi$, the mapping $r_j : \Phi \mapsto \Phi^j$ is a fixed-point free involution on the set $\mathcal{F}(\mathcal{P})$ of all flags of \mathcal{P} .

The monodromy group $Mon(\mathcal{P}) = \langle r_0, \ldots, r_{n-1} \rangle$ is then a subgroup of the symmetric group on $\mathcal{F}(\mathcal{P})$.

- need not be a lattice
- need not be finite
- need not have a familiar geometric realization.
- The abstract 3-polytopics include all convex polyhedra, face to face, tessellations and many less familiar structures. But
- you can sately think of a finite 3 polytope as a map on a compact surface

Do we want details?

- need not be a lattice
- need not be finite
- need not have a familiar geometric realization

The abstract 3 polytopes include all convex polyhedra, face-to-faceresectations and many-loss familiar structures. But

you can safely think of a finite 3-polytope as a map on a compact surface

▶ Do we want details?

- need not be a lattice
- need not be finite
- need not have a familiar geometric realization

The abstract 3-polytopes include all convex polyhedra, face-to-face tessellations and many less familiar structures. But

you can safely think of a finite 3-polytope as a *map on a compact surface*.

▶ Do we want details?

- need not be a lattice
- need not be finite
- need not have a familiar geometric realization

The abstract 3-polytopes include all convex polyhedra, face-to-face tessellations and many less familiar structures. But

you can safely think of a finite 3-polytope as a *map on a compact surface*.

▶ Do we want details?

- need not be a lattice
- need not be finite
- need not have a familiar geometric realization

The abstract 3-polytopes include all convex polyhedra, face-to-face tessellations and many less familiar structures. But

you can safely think of a finite 3-polytope as a map on a compact surface.

Do we want details?

is a poset whose elements (= faces) satisfy:

is a poset whose elements (= faces) satisfy:

• Q has a unique minimal face F_{-1} and maximal face F_n

The *n*-polytope ${\cal Q}$

is a poset whose elements (= faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or *flag* has n + 2 faces

is a poset whose elements (= faces) satisfy:

- Q has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or flag has n + 2 faces

so $\mathcal Q$ has a strictly monotone rank function onto $\{-1,0,\ldots,n\}$

The *n*-polytope ${\cal Q}$

is a poset whose elements (= faces) satisfy:

- Q has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or *flag* has n + 2 faces

so $\mathcal Q$ has a strictly monotone rank function onto $\{-1,0,\ldots,n\}$

• \mathcal{Q} is strongly flag connected

is a poset whose elements (= faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or *flag* has n + 2 faces

so $\mathcal Q$ has a strictly monotone rank function onto $\{-1,0,\ldots,n\}$

• \mathcal{Q} is strongly flag connected

• $\mathcal Q$ satisfies the 'diamond' condition:

is a poset whose elements (= faces) satisfy:

- \mathcal{Q} has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or flag has n + 2 faces

so ${\mathcal Q}$ has a strictly monotone rank function onto $\{-1,0,\ldots,n\}$

• \mathcal{Q} is strongly flag connected

• \mathcal{Q} satisfies the 'diamond' condition:

whenever F < G with rank(F) = j - 1 and rank(G) = j + 1 there exist exactly two *j*-faces *H* with F < H < G

get back

is a poset whose elements (= faces) satisfy:

- Q has a unique minimal face F_{-1} and maximal face F_n
- Every maximal chain or flag has n + 2 faces

so $\mathcal Q$ has a strictly monotone rank function onto $\{-1,0,\ldots,n\}$

• \mathcal{Q} is strongly flag connected

via adjacency in the flag graph; this rules out, for example, the disjoint union of two polyhedra

• \mathcal{Q} satisfies the 'diamond' condition:

whenever F < G with rank(F) = j - 1 and rank(G) = j + 1 there exist exactly two *j*-faces *H* with F < H < G

get back

The symmetry of $\ensuremath{\mathcal{Q}}$

is encoded in the group $\Gamma = \Gamma(Q)$ of all order-preserving bijections (= automorphisms) of Q.

Each automorphism is det'd by its action on any one $\textit{flag}\ \Phi;$ for a polyhedron, a flag

 $\Phi = incident [vertex, edge, facet] triple$

<u>Def.</u> Q is *regular* if Γ is transitive on flags.

Examples:

• any polygon (n = 2) is (abstractly, i.e. combinatorially) regular

• the usual tiling of \mathbb{E}^3 by unit cubes is an infinite regular 4-polytope

• the Platonic solids (n = 3).

The symmetry of $\ensuremath{\mathcal{Q}}$

is encoded in the group $\Gamma = \Gamma(Q)$ of all order-preserving bijections (= automorphisms) of Q.

Each automorphism is det'd by its action on any one $\textit{flag}\ \Phi;$ for a polyhedron, a flag

 $\Phi = incident [vertex, edge, facet] triple$

<u>Def.</u> Q is *regular* if Γ is transitive on flags.

Examples:

• any polygon (n = 2) is (abstractly, i.e. combinatorially) regular

the usual tiling of ℝ³ by unit cubes is an infinite regular 4-polytope
 the Platonic solids (n = 3).

The symmetry of $\ensuremath{\mathcal{Q}}$

is encoded in the group $\Gamma = \Gamma(Q)$ of all order-preserving bijections (= automorphisms) of Q.

Each automorphism is det'd by its action on any one $\textit{flag}\ \Phi;$ for a polyhedron, a flag

 $\Phi = incident [vertex, edge, facet] triple$

<u>Def.</u> Q is *regular* if Γ is transitive on flags.

Examples:

- any polygon (n = 2) is (abstractly, i.e. combinatorially) regular
- the usual tiling of \mathbb{E}^3 by unit cubes is an infinite regular 4-polytope

the Platonic solids (n = 3)

The symmetry of ${\cal Q}$

is encoded in the group $\Gamma = \Gamma(Q)$ of all order-preserving bijections (= automorphisms) of Q.

Each automorphism is det'd by its action on any one $\textit{flag}\ \Phi;$ for a polyhedron, a flag

 $\Phi = incident [vertex, edge, facet] triple$

<u>Def.</u> Q is *regular* if Γ is transitive on flags.

Examples:

- any polygon (n = 2) is (abstractly, i.e. combinatorially) regular
- \bullet the usual tiling of \mathbb{E}^3 by unit cubes is an infinite regular 4-polytope
- the Platonic solids (n = 3).

The convex regular polyhedra (=Platonic solids) and the Kepler-Poinsot star-polyhedra \mathcal{P}

- Local data for both polyhedron \mathcal{P} and its group $\Gamma(\mathcal{P})$ reside in the Schläfli symbol or type $\{p, q\}$.
- Platonic solids: $\{3,3\}$ (tetrahedron), $\{3,4\}$ (octahedron), $\{4,3\}$ (cube), $\{3,5\}$ (icosahedron), $\{5,3\}$ (dodecahedron)
- Kepler (ca. 1619) $\{\frac{5}{2}, 5\}$ (small stellated dodecahedron), $\{\frac{5}{2}, 3\}$ (great stellated dodecahedron)
- Poinsot (ca. 1809) $\{5, \frac{5}{2}\}$ (great dodecahedron), $\{3, \frac{5}{2}\}$ (great isosahedron)

The classical convex regular polytopes, their Schläfli symbols and finite Coxeter groups with string diagrams

name	symbol	# facets	(Coxeter) group	order
<i>n</i> = 4:				
simplex	$\{3, 3, 3\}$	5	$A_4 \simeq S_5$	5!
cross-polytope	$\{3, 3, 4\}$	16	B ₄	384
cube	$\{4, 3, 3\}$	8	B ₄	384
24-cell	$\{3, 4, 3\}$	24	F ₄	1152
600-cell	$\{3, 3, 5\}$	600	H_4	14400
120-cell	$\{5, 3, 3\}$	120	H_4	14400
<i>n</i> > 4:				
simplex	$\{3,3,\ldots,3\}$	n+1	$A_n \simeq S_{n+1}$	(n+1)!
cross-polytope	$\{3,\ldots,3,4\}$	2 ⁿ	B _n	$2^n \cdot n!$
cube	$\{4,3,\ldots,3\}$	2 <i>n</i>	B _n	$2^n \cdot n!$

Barry Monson, University of New Brunswick, (from projects wi Monodromy Groups of Polytopes

Schulte (1982) showed that the abstract regular *n*-polytopes \mathcal{P} correspond exactly to the *string C-groups of rank n* (which we often study in their place).

The Correspondence Theorem.

Part 1. If \mathcal{P} is a regular *n*-polytope, then $\Gamma(\mathcal{P}) = \langle \rho_0, \dots, \rho_{n-1} \rangle$ is a *string C-group*.

Part 2. Conversely, if $\Gamma = \langle \rho_0, \dots, \rho_{n-1} \rangle$ is a string C-group, then we can reconstruct an *n*-polytope $\mathcal{P}(\Gamma)$ (in a natural way as a coset geometry on Γ).

Furthermore, $\Gamma(\mathcal{P}(\Gamma)) \simeq \Gamma$ and $\mathcal{P}(\Gamma(\mathcal{P})) \simeq \mathcal{P}$.

Means: having fixed a base flag Φ in \mathcal{P} , for $0 \leq j \leq n-1$ there is a unique automorphism $\rho_j \in \Gamma(\mathcal{P})$ mapping Φ to the *j*-adjacent flag Φ^j . These involutions generate $\Gamma(\mathcal{P})$ and satisfy the relations implicit in some string (Coxeter) diagram, like

and perhaps other relations, so long as this *intersection condition* continues to hold:

$$\langle \rho_k : k \in I \rangle \cap \langle \rho_k : k \in J \rangle = \langle \rho_k : k \in I \cap J \rangle$$

(for all $I, J \subseteq \{0, \dots, n-1\}$). Notice that \mathcal{P} then has Schläfli type $\{p_1, \dots, p_{n-1}\}$.

