Are there (non-trivial) matroidal Galois invariants of dessins?

Goran Malić

School of Mathematics, University of Manchester

SIGMAP 2014 West Malvern, UK

MANCHESTER

Let $E = \{1, 2, ..., n\}$ be a finite set and let B be a collection of subsets of E.

イロト イヨト イヨト イヨト

Let $E = \{1, 2, ..., n\}$ be a finite set and let \mathcal{B} be a collection of subsets of *E*. A *matroid* $M(E, \mathcal{B})$ on the *ground set E* is an ordered pair (E, \mathcal{B}) such that

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MANCHESTER

Let $E = \{1, 2, ..., n\}$ be a finite set and let \mathcal{B} be a collection of subsets of *E*. A *matroid* $M(E, \mathcal{B})$ on the *ground set E* is an ordered pair (E, \mathcal{B}) such that

• $\mathcal{B} \neq \emptyset$,

< 3

▲ (日) ▶ (▲ 三) ▶

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \setminus Y$,

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \setminus Y$,

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \setminus Y$, then there is a $y \in Y \setminus X$ such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \setminus Y$, then there is a $y \in Y \setminus X$ such that $(X \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

Let $E = \{1, 2, ..., n\}$ be a finite set and let \mathcal{B} be a collection of subsets of *E*. A *matroid* $M(E, \mathcal{B})$ on the *ground set E* is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \setminus Y$, then there is a $y \in Y \setminus X$ such that $(X \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

Elements of \mathcal{B} are called *bases*.

MANCHESTER

Let $E = \{1, 2, ..., n\}$ be a finite set and let \mathcal{B} be a collection of subsets of *E*. A *matroid* $M(E, \mathcal{B})$ on the *ground set E* is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \setminus Y$, then there is a $y \in Y \setminus X$ such that $(X \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

Elements of \mathcal{B} are called *bases*. Subsets of bases are called *independent sets*.

MANCHESTER

Let $E = \{1, 2, ..., n\}$ be a finite set and let \mathcal{B} be a collection of subsets of *E*. A *matroid* $M(E, \mathcal{B})$ on the *ground set E* is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \setminus Y$, then there is a $y \in Y \setminus X$ such that $(X \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

Elements of \mathcal{B} are called *bases*. Subsets of bases are called *independent sets*. Any two bases have the same size.

Matroids are ubiquitous in mathematics. They arise from

< 3

Matroids are ubiquitous in mathematics. They arise from

linearly independent subsets of a set of vectors,

- 4 ∃ →

Matroids are ubiquitous in mathematics. They arise from

- linearly independent subsets of a set of vectors,
- linearly independent columns of matrices,

- 3 →

Matroids are ubiquitous in mathematics. They arise from

- linearly independent subsets of a set of vectors,
- linearly independent columns of matrices,
- hyperplane arrangements in \mathbb{R}^n ,

MANCHESTER

Matroids are ubiquitous in mathematics. They arise from

- linearly independent subsets of a set of vectors,
- linearly independent columns of matrices,
- hyperplane arrangements in \mathbb{R}^n ,
- point-line incidences in finite geometries,

Matroids are ubiquitous in mathematics. They arise from

- linearly independent subsets of a set of vectors,
- linearly independent columns of matrices,
- hyperplane arrangements in \mathbb{R}^n ,
- point-line incidences in finite geometries,
- spanning forests in graphs.

G. Malić

MANCHESTER

Given a graph *G* we can form a matroid M(G) by taking \mathcal{B} to be the collection of its spanning forests.

< E

Given a graph *G* we can form a matroid M(G) by taking \mathcal{B} to be the collection of its spanning forests.

< 3

Given a graph *G* we can form a matroid M(G) by taking \mathcal{B} to be the collection of its spanning forests.

< E

Given a graph *G* we can form a matroid M(G) by taking \mathcal{B} to be the collection of its spanning forests.

Given a graph *G* we can form a matroid M(G) by taking \mathcal{B} to be the collection of its spanning forests.

Two matroids M(E, B) and M(E', B') are isomorphic if there is a bijection $f \colon E \to E'$ preserving the independence structure.

Given a graph *G* we can form a matroid M(G) by taking \mathcal{B} to be the collection of its spanning forests.

Two matroids M(E, B) and M(E', B') are isomorphic if there is a bijection $f: E \to E'$ preserving the independence structure.

Definition

We say that M is a graphic matroid if M is isomorphic to M(G), for some graph G.

A D b 4 A b

MANCHESTER

Given a graph *G* we can form a matroid M(G) by taking \mathcal{B} to be the collection of its spanning forests.

Two matroids M(E, B) and M(E', B') are isomorphic if there is a bijection $f: E \to E'$ preserving the independence structure.

Definition

We say that M is a graphic matroid if M is isomorphic to M(G), for some graph G.

A D b 4 A b

MANCHESTER

Given a graph *G* we can form a matroid M(G) by taking \mathcal{B} to be the collection of its spanning forests.

Two matroids M(E, B) and M(E', B') are isomorphic if there is a bijection $f: E \to E'$ preserving the independence structure.

Definition

We say that M is a graphic matroid if M is isomorphic to M(G), for some graph G.

Not every matroid is graphic.

MANCHESTER

Some trivial Galois invariants are associated to graphic matroids. For example

э

Some trivial Galois invariants are associated to graphic matroids. For example

• The size of the ground set.

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D = (X, \beta)$ is a tree, and $D^{\sigma} = (X^{\sigma}, \beta^{\sigma})$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$, then $M(D) = M(D^{\sigma})$.

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D = (X, \beta)$ is a tree, and $D^{\sigma} = (X^{\sigma}, \beta^{\sigma})$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$, then $M(D) = M(D^{\sigma})$.

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D = (X, \beta)$ is a tree, and $D^{\sigma} = (X^{\sigma}, \beta^{\sigma})$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$, then $M(D) = M(D^{\sigma})$.

However, matroids are rarely preserved by the action of $Gal(\overline{\mathbb{Q}}|\mathbb{Q})$. In most examples, the number of bases is not preserved.

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D = (X, \beta)$ is a tree, and $D^{\sigma} = (X^{\sigma}, \beta^{\sigma})$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$, then $M(D) = M(D^{\sigma})$.

However, matroids are rarely preserved by the action of $Gal(\overline{\mathbb{Q}}|\mathbb{Q})$. In most examples, the number of bases is not preserved.

MANCHESTER

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D = (X, \beta)$ is a tree, and $D^{\sigma} = (X^{\sigma}, \beta^{\sigma})$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$, then $M(D) = M(D^{\sigma})$.

However, matroids are rarely preserved by the action of $Gal(\overline{\mathbb{Q}}|\mathbb{Q})$. In most examples, the number of bases is not preserved.

MANCHESTER

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D = (X, \beta)$ is a tree, and $D^{\sigma} = (X^{\sigma}, \beta^{\sigma})$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$, then $M(D) = M(D^{\sigma})$.

However, matroids are rarely preserved by the action of $Gal(\overline{\mathbb{Q}}|\mathbb{Q})$. In most examples, the number of bases is not preserved.

MANCHESTER

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D = (X, \beta)$ is a tree, and $D^{\sigma} = (X^{\sigma}, \beta^{\sigma})$ for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$, then $M(D) = M(D^{\sigma})$.

However, matroids are rarely preserved by the action of $Gal(\overline{\mathbb{Q}}|\mathbb{Q})$. In most examples, the number of bases is not preserved.

MANCHESTER

If M = (E, B) is a matroid on the ground set *E*, then its *dual matroid* $M^*(E)$ is the matroid (E, B^*) where

$$\mathcal{B}^* = \{ \boldsymbol{E} \setminus \boldsymbol{B} \mid \boldsymbol{B} \in \mathcal{B} \}.$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

If M = (E, B) is a matroid on the ground set *E*, then its *dual matroid* $M^*(E)$ is the matroid (E, B^*) where

$$\mathcal{B}^* = \{ \boldsymbol{E} \setminus \boldsymbol{B} \mid \boldsymbol{B} \in \mathcal{B} \}.$$

Clearly, $M^{**} = M$.

< ロ > < 同 > < 三 > < 三 > 、

If M = (E, B) is a matroid on the ground set *E*, then its *dual matroid* $M^*(E)$ is the matroid (E, B^*) where

$$\mathcal{B}^* = \{ \boldsymbol{E} \setminus \boldsymbol{B} \mid \boldsymbol{B} \in \mathcal{B} \}.$$

Clearly, $M^{**} = M$.

Lemma

If G is planar, then $M(G^*) \cong M^*(G)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

MANCHESTER

If M = (E, B) is a matroid on the ground set *E*, then its *dual matroid* $M^*(E)$ is the matroid (E, B^*) where

$$\mathcal{B}^* = \{ \boldsymbol{E} \setminus \boldsymbol{B} \mid \boldsymbol{B} \in \mathcal{B} \}.$$

Clearly, $M^{**} = M$.

Lemma

If G is planar, then $M(G^*) \cong M^*(G)$.

Theorem

A graph G is planar if and only if $M^*(G)$ is graphic.

If M = (E, B) is a matroid on the ground set *E*, then its *dual matroid* $M^*(E)$ is the matroid (E, B^*) where

$$\mathcal{B}^* = \{ \boldsymbol{E} \setminus \boldsymbol{B} \mid \boldsymbol{B} \in \mathcal{B} \}.$$

Clearly, $M^{**} = M$.

Lemma

If G is planar, then $M(G^*) \cong M^*(G)$.

Theorem

A graph G is planar if and only if $M^*(G)$ is graphic.

Corollary

A graph G is planar if and only if $M^*(G) \cong M(G^*)$.

If M = (E, B) is a matroid on the ground set *E*, then its *dual matroid* $M^*(E)$ is the matroid (E, B^*) where

$$\mathcal{B}^* = \{ \boldsymbol{E} \setminus \boldsymbol{B} \mid \boldsymbol{B} \in \mathcal{B} \}.$$

Clearly, $M^{**} = M$.

Lemma

If G is planar, then $M(G^*) \cong M^*(G)$.

Theorem

A graph G is planar if and only if $M^*(G)$ is graphic.

Corollary

A graph G is planar if and only if $M^*(G) \cong M(G^*)$.

If M = (E, B) is a matroid on the ground set *E*, then its *dual matroid* $M^*(E)$ is the matroid (E, B^*) where

$$\mathcal{B}^* = \{ \boldsymbol{E} \setminus \boldsymbol{B} \mid \boldsymbol{B} \in \mathcal{B} \}.$$

Clearly, $M^{**} = M$.

Lemma

If G is planar, then $M(G^*) \cong M^*(G)$.

Theorem

A graph G is planar if and only if $M^*(G)$ is graphic.

Corollary

A graph G is planar if and only if $M^*(G) \cong M(G^*)$.

We say that M(G) is self-dual if $M(G) \cong M^*(G)$.

If M = (E, B) is a matroid on the ground set *E*, then its *dual matroid* $M^*(E)$ is the matroid (E, B^*) where

$$\mathcal{B}^* = \{ \boldsymbol{E} \setminus \boldsymbol{B} \mid \boldsymbol{B} \in \mathcal{B} \}.$$

Clearly, $M^{**} = M$.

Lemma

If G is planar, then $M(G^*) \cong M^*(G)$.

Theorem

A graph G is planar if and only if $M^*(G)$ is graphic.

Corollary

A graph G is planar if and only if $M^*(G) \cong M(G^*)$.

We say that M(G) is self-dual if $M(G) \cong M^*(G)$. The previous corollary implies that only planar graphs can have self-dual matroids.

G. Malić

We have the following implications:

Map self-duality \Rightarrow Graph self-duality \Rightarrow Matroid self-duality

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MANCHESTER

We have the following implications:

```
Map self-duality \Rightarrow Graph self-duality \Rightarrow Matroid self-duality
```

and in general the implications cannot be reversed (B. Servatius, H. Servatius, *Self-dual Graphs*, Discrete Math. 149).

We have the following implications:

Map self-duality \Rightarrow Graph self-duality \Rightarrow Matroid self-duality

and in general the implications cannot be reversed (B. Servatius, H. Servatius, *Self-dual Graphs*, Discrete Math. 149).

We have the following implications:

```
Map self-duality \Rightarrow Graph self-duality \Rightarrow Matroid self-duality
```

and in general the implications cannot be reversed (B. Servatius, H. Servatius, *Self-dual Graphs*, Discrete Math. 149).

If *G* is 3-connected, then the three notions of self-duality coincide.

We will consider only clean genus 0 dessins.

Image: A matched block of the second seco

We will consider only clean genus 0 dessins. A dessin (X, β) is self-dual if it is isomorphic to its dual dessin $(X, 1/\beta)$.

We will consider only clean genus 0 dessins. A dessin (X, β) is self-dual if it is isomorphic to its dual dessin $(X, 1/\beta)$.

Proposition

If (X, β) is self-dual, then so is $(X^{\sigma}, \beta^{\sigma})$, for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$.

We will consider only clean genus 0 dessins. A dessin (X,β) is self-dual if it is isomorphic to its dual dessin $(X, 1/\beta)$.

Proposition

If (X, β) is self-dual, then so is $(X^{\sigma}, \beta^{\sigma})$, for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$.

Conjecture

If (X,β) has a self-dual matroid, then $(X^{\sigma},\beta^{\sigma})$ has a self-dual matroid as well, for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$.

We will consider only clean genus 0 dessins. A dessin (X,β) is self-dual if it is isomorphic to its dual dessin $(X, 1/\beta)$.

Proposition

If (X, β) is self-dual, then so is $(X^{\sigma}, \beta^{\sigma})$, for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$.

Conjecture

If (X,β) has a self-dual matroid, then $(X^{\sigma},\beta^{\sigma})$ has a self-dual matroid as well, for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$.

We will consider only clean genus 0 dessins. A dessin (X,β) is self-dual if it is isomorphic to its dual dessin $(X, 1/\beta)$.

Proposition

If (X, β) is self-dual, then so is $(X^{\sigma}, \beta^{\sigma})$, for $\sigma \in Gal(\overline{\mathbb{Q}}|\mathbb{Q})$.

Conjecture

If (X,β) has a self-dual matroid, then $(X^{\sigma},\beta^{\sigma})$ has a self-dual matroid as well, for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$.

Evidence?

MANCHESTER

We will consider only clean genus 0 dessins. A dessin (X,β) is self-dual if it is isomorphic to its dual dessin $(X, 1/\beta)$.

Proposition

If (X, β) is self-dual, then so is $(X^{\sigma}, \beta^{\sigma})$, for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$.

Conjecture

If (X,β) has a self-dual matroid, then $(X^{\sigma},\beta^{\sigma})$ has a self-dual matroid as well, for $\sigma \in \text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$.

Evidence? Brute force (Adrianov et al, *Catalog Of Dessins d'Enfants With No More Than 4 Edges*, J. of Math. Sci. 158(1)).

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MANCHESTER

• Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

• Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

• Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose *M* is self-dual and |B| = n.

• Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose *M* is self-dual and |B| = n. Since $|B| = |E \setminus B|$ we must have |E| = 2n.

 Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose *M* is self-dual and |B| = n. Since $|B| = |E \setminus B|$ we must have |E| = 2n. Moreover, n = |B| = v - 1

 Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose *M* is self-dual and |B| = n. Since $|B| = |E \setminus B|$ we must have |E| = 2n. Moreover, n = |B| = v - 1 and since v + f = 2 + 2n, we must have f = n + 1.

 Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose *M* is self-dual and |B| = n. Since $|B| = |E \setminus B|$ we must have |E| = 2n. Moreover, n = |B| = v - 1 and since v + f = 2 + 2n, we must have f = n + 1. Therefore we can consider only passports of the form

$$[v_1^{m_1}\cdots v_k^{m_k}, 2^{2n}, f_1^{n_1}\cdots f_l^{n_l}],$$

MANCHESTER

 Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose *M* is self-dual and |B| = n. Since $|B| = |E \setminus B|$ we must have |E| = 2n. Moreover, n = |B| = v - 1 and since v + f = 2 + 2n, we must have f = n + 1. Therefore we can consider only passports of the form

$$[v_1^{m_1}\cdots v_k^{m_k}, 2^{2n}, f_1^{n_1}\cdots f_l^{n_l}],$$

where

$$m_1 + \cdots + m_k = n_1 + \cdots + n_l = n + 1,$$

$$\sum m_j v_j = \sum n_i f_i = 2 \cdot 2n.$$

MANCHESTER

 Is there an interesting family of maps for which matroid self-duality is clearly an invariant?

< E

イロト イヨト イヨト

 Is there an interesting family of maps for which matroid self-duality is clearly an invariant?

< E

イロト イヨト イヨト

 Is there an interesting family of maps for which matroid self-duality is clearly an invariant?

$$[v_1^{m_1} \cdots v_k^{m_k}, 2^{2n}, f_1^1 1^n],$$

$$m_1 + \cdots + m_k = n + 1,$$

$$\sum m_j v_j = f_1 + n = 2 \cdot 2n.$$

< E

 Is there an interesting family of maps for which matroid self-duality is clearly an invariant?

$$[v_1^{m_1} \cdots v_k^{m_k}, 2^{2n}, f_1^1 1^n],$$

$$m_1 + \cdots + m_k = n + 1,$$

$$\sum m_j v_j = f_1 + n = 2 \cdot 2n.$$

< 3

• What about higher genus?

イロト イヨト イヨト イヨト

MANCHESTER

• What about higher genus?

イロト イヨト イヨト イヨト

MANCHESTER

• What about higher genus? We need to pass to Lagrangian (also known as delta or symmetric) matroids.

4 A N

MANCHESTER

Thank You!

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 →