Are there (non-trivial) matroidal Galois invariants of dessins?

Goran Malić

School of Mathematics, University of Manchester

SIGMAP 2014
 West Malvern, UK

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E.

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E. A matroid $M(E, \mathcal{B})$ on the ground set E is an ordered pair (E, \mathcal{B}) such that

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E. A matroid $M(E, \mathcal{B})$ on the ground set E is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E. A matroid $M(E, \mathcal{B})$ on the ground set E is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \backslash Y$,

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E. A matroid $M(E, \mathcal{B})$ on the ground set E is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \backslash Y$,

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E. A matroid $M(E, \mathcal{B})$ on the ground set E is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \backslash Y$, then there is a $y \in Y \backslash X$ such that

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E. A matroid $M(E, \mathcal{B})$ on the ground set E is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \backslash Y$, then there is a $y \in Y \backslash X$ such that $(X \backslash\{x\}) \cup\{y\} \in \mathcal{B}$.

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E. A matroid $M(E, \mathcal{B})$ on the ground set E is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \backslash Y$, then there is a $y \in Y \backslash X$ such that $(X \backslash\{x\}) \cup\{y\} \in \mathcal{B}$.
Elements of \mathcal{B} are called bases.

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E. A matroid $M(E, \mathcal{B})$ on the ground set E is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \backslash Y$, then there is a $y \in Y \backslash X$ such that $(X \backslash\{x\}) \cup\{y\} \in \mathcal{B}$.
Elements of \mathcal{B} are called bases. Subsets of bases are called independent sets.

Matroids

Let $E=\{1,2, \ldots, n\}$ be a finite set and let \mathcal{B} be a collection of subsets of E. A matroid $M(E, \mathcal{B})$ on the ground set E is an ordered pair (E, \mathcal{B}) such that

- $\mathcal{B} \neq \emptyset$,
- if $X, Y \in \mathcal{B}$ and $x \in X \backslash Y$, then there is a $y \in Y \backslash X$ such that $(X \backslash\{x\}) \cup\{y\} \in \mathcal{B}$.
Elements of \mathcal{B} are called bases. Subsets of bases are called independent sets. Any two bases have the same size.

Examples of matroids

Matroids are ubiquitous in mathematics. They arise from

Examples of matroids

Matroids are ubiquitous in mathematics. They arise from

- linearly independent subsets of a set of vectors,

Examples of matroids

Matroids are ubiquitous in mathematics. They arise from

- linearly independent subsets of a set of vectors,
- linearly independent columns of matrices,

Examples of matroids

Matroids are ubiquitous in mathematics. They arise from

- linearly independent subsets of a set of vectors,
- linearly independent columns of matrices,
- hyperplane arrangements in \mathbb{R}^{n},

Examples of matroids

Matroids are ubiquitous in mathematics. They arise from

- linearly independent subsets of a set of vectors,
- linearly independent columns of matrices,
- hyperplane arrangements in \mathbb{R}^{n},
- point-line incidences in finite geometries,

Examples of matroids

Matroids are ubiquitous in mathematics. They arise from

- linearly independent subsets of a set of vectors,
- linearly independent columns of matrices,
- hyperplane arrangements in \mathbb{R}^{n},
- point-line incidences in finite geometries,
- spanning forests in graphs.

Graphic matroids

Given a graph G we can form a matroid $M(G)$ by taking \mathcal{B} to be the collection of its spanning forests.

Graphic matroids

Given a graph G we can form a matroid $M(G)$ by taking \mathcal{B} to be the collection of its spanning forests.

Graphic matroids

Given a graph G we can form a matroid $M(G)$ by taking \mathcal{B} to be the collection of its spanning forests.

Graphic matroids

Given a graph G we can form a matroid $M(G)$ by taking \mathcal{B} to be the collection of its spanning forests.

Graphic matroids

Given a graph G we can form a matroid $M(G)$ by taking \mathcal{B} to be the collection of its spanning forests.

Two matroids $M(E, \mathcal{B})$ and $M\left(E^{\prime}, \mathcal{B}^{\prime}\right)$ are isomorphic if there is a bijection $f: E \rightarrow E^{\prime}$ preserving the independence structure.

Graphic matroids

Given a graph G we can form a matroid $M(G)$ by taking \mathcal{B} to be the collection of its spanning forests.

Two matroids $M(E, \mathcal{B})$ and $M\left(E^{\prime}, \mathcal{B}^{\prime}\right)$ are isomorphic if there is a bijection $f: E \rightarrow E^{\prime}$ preserving the independence structure.

Definition

We say that M is a graphic matroid if M is isomorphic to $M(G)$, for some graph G.

Graphic matroids

Given a graph G we can form a matroid $M(G)$ by taking \mathcal{B} to be the collection of its spanning forests.

Two matroids $M(E, \mathcal{B})$ and $M\left(E^{\prime}, \mathcal{B}^{\prime}\right)$ are isomorphic if there is a bijection $f: E \rightarrow E^{\prime}$ preserving the independence structure.

Definition

We say that M is a graphic matroid if M is isomorphic to $M(G)$, for some graph G.

Graphic matroids

Given a graph G we can form a matroid $M(G)$ by taking \mathcal{B} to be the collection of its spanning forests.

Two matroids $M(E, \mathcal{B})$ and $M\left(E^{\prime}, \mathcal{B}^{\prime}\right)$ are isomorphic if there is a bijection $f: E \rightarrow E^{\prime}$ preserving the independence structure.

Definition

We say that M is a graphic matroid if M is isomorphic to $M(G)$, for some graph G.

Not every matroid is graphic.

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D=(X, \beta)$ is a tree, and $D^{\sigma}=\left(X^{\sigma}, \beta^{\sigma}\right)$ for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$, then $M(D)=M\left(D^{\sigma}\right)$.

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D=(X, \beta)$ is a tree, and $D^{\sigma}=\left(X^{\sigma}, \beta^{\sigma}\right)$ for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$, then $M(D)=M\left(D^{\sigma}\right)$.

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D=(X, \beta)$ is a tree, and $D^{\sigma}=\left(X^{\sigma}, \beta^{\sigma}\right)$ for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$, then $M(D)=M\left(D^{\sigma}\right)$.
However, matroids are rarely preserved by the action of $\operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$. In most examples, the number of bases is not preserved.

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D=(X, \beta)$ is a tree, and $D^{\sigma}=\left(X^{\sigma}, \beta^{\sigma}\right)$ for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$, then $M(D)=M\left(D^{\sigma}\right)$.
However, matroids are rarely preserved by the action of $\mathrm{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$. In most examples, the number of bases is not preserved.

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D=(X, \beta)$ is a tree, and $D^{\sigma}=\left(X^{\sigma}, \beta^{\sigma}\right)$ for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$, then $M(D)=M\left(D^{\sigma}\right)$.
However, matroids are rarely preserved by the action of $\operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$. In most examples, the number of bases is not preserved.

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D=(X, \beta)$ is a tree, and $D^{\sigma}=\left(X^{\sigma}, \beta^{\sigma}\right)$ for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$, then $M(D)=M\left(D^{\sigma}\right)$.
However, matroids are rarely preserved by the action of Gal $(\overline{\mathbb{Q}} \mid \mathbb{Q})$. In most examples, the number of bases is not preserved.

Trivial matroidal Galois invariants

Some trivial Galois invariants are associated to graphic matroids. For example

- The size of the ground set.
- The rank (size of the bases) of M.
- If $D=(X, \beta)$ is a tree, and $D^{\sigma}=\left(X^{\sigma}, \beta^{\sigma}\right)$ for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$, then $M(D)=M\left(D^{\sigma}\right)$.
However, matroids are rarely preserved by the action of Gal $(\overline{\mathbb{Q}} \mid \mathbb{Q})$. In most examples, the number of bases is not preserved.

Dual matroid

If $M=(E, \mathcal{B})$ is a matroid on the ground set E, then its dual matroid $M^{*}(E)$ is the matroid $\left(E, \mathcal{B}^{*}\right)$ where

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\} .
$$

Dual matroid

If $M=(E, \mathcal{B})$ is a matroid on the ground set E, then its dual matroid $M^{*}(E)$ is the matroid $\left(E, \mathcal{B}^{*}\right)$ where

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\} .
$$

Clearly, $M^{* *}=M$.

Dual matroid

If $M=(E, \mathcal{B})$ is a matroid on the ground set E, then its dual matroid $M^{*}(E)$ is the matroid $\left(E, \mathcal{B}^{*}\right)$ where

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\} .
$$

Clearly, $M^{* *}=M$.
Lemma
If G is planar, then $M\left(G^{*}\right) \cong M^{*}(G)$.

Dual matroid

If $M=(E, \mathcal{B})$ is a matroid on the ground set E, then its dual matroid $M^{*}(E)$ is the matroid $\left(E, \mathcal{B}^{*}\right)$ where

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\} .
$$

Clearly, $M^{* *}=M$.
Lemma
If G is planar, then $M\left(G^{*}\right) \cong M^{*}(G)$.
Theorem
A graph G is planar if and only if $M^{*}(G)$ is graphic.

Dual matroid

If $M=(E, \mathcal{B})$ is a matroid on the ground set E, then its dual matroid $M^{*}(E)$ is the matroid $\left(E, \mathcal{B}^{*}\right)$ where

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\} .
$$

Clearly, $M^{* *}=M$.
Lemma
If G is planar, then $M\left(G^{*}\right) \cong M^{*}(G)$.
Theorem
A graph G is planar if and only if $M^{*}(G)$ is graphic.
Corollary
A graph G is planar if and only if $M^{*}(G) \cong M\left(G^{*}\right)$.

Dual matroid

If $M=(E, \mathcal{B})$ is a matroid on the ground set E, then its dual matroid $M^{*}(E)$ is the matroid $\left(E, \mathcal{B}^{*}\right)$ where

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\} .
$$

Clearly, $M^{* *}=M$.
Lemma
If G is planar, then $M\left(G^{*}\right) \cong M^{*}(G)$.
Theorem
A graph G is planar if and only if $M^{*}(G)$ is graphic.
Corollary
A graph G is planar if and only if $M^{*}(G) \cong M\left(G^{*}\right)$.

Dual matroid

If $M=(E, \mathcal{B})$ is a matroid on the ground set E, then its dual matroid $M^{*}(E)$ is the matroid $\left(E, \mathcal{B}^{*}\right)$ where

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\} .
$$

Clearly, $M^{* *}=M$.
Lemma
If G is planar, then $M\left(G^{*}\right) \cong M^{*}(G)$.
Theorem
A graph G is planar if and only if $M^{*}(G)$ is graphic.
Corollary
A graph G is planar if and only if $M^{*}(G) \cong M\left(G^{*}\right)$.
We say that $M(G)$ is self-dual if $M(G) \cong M^{*}(G)$.

Dual matroid

If $M=(E, \mathcal{B})$ is a matroid on the ground set E, then its dual matroid $M^{*}(E)$ is the matroid $\left(E, \mathcal{B}^{*}\right)$ where

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\} .
$$

Clearly, $M^{* *}=M$.
Lemma
If G is planar, then $M\left(G^{*}\right) \cong M^{*}(G)$.
Theorem
A graph G is planar if and only if $M^{*}(G)$ is graphic.

Corollary
 A graph G is planar if and only if $M^{*}(G) \cong M\left(G^{*}\right)$.

We say that $M(G)$ is self-dual if $M(G) \cong M^{*}(G)$. The previous corollary implies that only planar graphs can have self-dual matroids.

Comparing self duality

We have the following implications:
Map self-duality \Rightarrow Graph self-duality \Rightarrow Matroid self-duality

Comparing self duality

We have the following implications:
Map self-duality \Rightarrow Graph self-duality \Rightarrow Matroid self-duality and in general the implications cannot be reversed (B. Servatius, H. Servatius, Self-dual Graphs, Discrete Math. 149).

Comparing self duality

We have the following implications:
Map self-duality \Rightarrow Graph self-duality \Rightarrow Matroid self-duality and in general the implications cannot be reversed (B. Servatius, H. Servatius, Self-dual Graphs, Discrete Math. 149).

Comparing self duality

We have the following implications:
Map self-duality \Rightarrow Graph self-duality \Rightarrow Matroid self-duality
and in general the implications cannot be reversed (B. Servatius, H. Servatius, Self-dual Graphs, Discrete Math. 149).

If G is 3-connected, then the three notions of self-duality coincide.

Self-duality in dessins

We will consider only clean genus 0 dessins.

Self-duality in dessins

We will consider only clean genus 0 dessins. A dessin (X, β) is self-dual if it is isomorphic to its dual dessin $(X, 1 / \beta)$.

Self-duality in dessins

We will consider only clean genus 0 dessins. A dessin (X, β) is self-dual if it is isomorphic to its dual dessin $(X, 1 / \beta)$.

Proposition

If (X, β) is self-dual, then so is $\left(X^{\sigma}, \beta^{\sigma}\right)$, for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$.

Self-duality in dessins

We will consider only clean genus 0 dessins. A dessin (X, β) is self-dual if it is isomorphic to its dual dessin $(X, 1 / \beta)$.

Proposition

If (X, β) is self-dual, then so is $\left(X^{\sigma}, \beta^{\sigma}\right)$, for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$.

Conjecture

If (X, β) has a self-dual matroid, then $\left(X^{\sigma}, \beta^{\sigma}\right)$ has a self-dual matroid as well, for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$.

Self-duality in dessins

We will consider only clean genus 0 dessins. A dessin (X, β) is self-dual if it is isomorphic to its dual dessin $(X, 1 / \beta)$.

Proposition

If (X, β) is self-dual, then so is $\left(X^{\sigma}, \beta^{\sigma}\right)$, for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$.

Conjecture

If (X, β) has a self-dual matroid, then $\left(X^{\sigma}, \beta^{\sigma}\right)$ has a self-dual matroid as well, for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$.

Self-duality in dessins

We will consider only clean genus 0 dessins. A dessin (X, β) is self-dual if it is isomorphic to its dual dessin $(X, 1 / \beta)$.

Proposition

If (X, β) is self-dual, then so is $\left(X^{\sigma}, \beta^{\sigma}\right)$, for $\sigma \in \mathrm{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$.

Conjecture

If (X, β) has a self-dual matroid, then $\left(X^{\sigma}, \beta^{\sigma}\right)$ has a self-dual matroid as well, for $\sigma \in \mathrm{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$.

Evidence?

Self-duality in dessins

We will consider only clean genus 0 dessins. A dessin (X, β) is self-dual if it is isomorphic to its dual dessin $(X, 1 / \beta)$.

Proposition

If (X, β) is self-dual, then so is $\left(X^{\sigma}, \beta^{\sigma}\right)$, for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$.

Conjecture

If (X, β) has a self-dual matroid, then $\left(X^{\sigma}, \beta^{\sigma}\right)$ has a self-dual matroid as well, for $\sigma \in \mathrm{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$.

Evidence? Brute force (Adrianov et al, Catalog Of Dessins d'Enfants With No More Than 4 Edges, J. of Math. Sci. 158(1)).

Questions

- Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Questions

- Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Questions

- Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose M is self-dual and $|B|=n$.

Questions

- Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose M is self-dual and $|B|=n$. Since $|B|=|E \backslash B|$ we must have $|E|=2 n$.

Questions

- Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose M is self-dual and $|B|=n$. Since $|B|=|E \backslash B|$ we must have $|E|=2 n$. Moreover, $n=|B|=v-1$

Questions

- Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose M is self-dual and $|B|=n$. Since $|B|=|E \backslash B|$ we must have $|E|=2 n$. Moreover, $n=|B|=v-1$ and since $v+f=2+2 n$, we must have $f=n+1$.

Questions

- Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose M is self-dual and $|B|=n$. Since $|B|=|E \backslash B|$ we must have $|E|=2 n$. Moreover, $n=|B|=v-1$ and since $v+f=2+2 n$, we must have $f=n+1$. Therefore we can consider only passports of the form

$$
\left[v_{1}^{m_{1}} \cdots v_{k}^{m_{k}}, 2^{2 n}, f_{1}^{n_{1}} \cdots f_{l}^{n_{l}}\right]
$$

Questions

- Is the matroid self-duality determined by the passport? Is there an example two maps with the same passport such that one map has a self-dual matroid but the other one doesn't?

Suppose M is self-dual and $|B|=n$. Since $|B|=|E \backslash B|$ we must have $|E|=2 n$. Moreover, $n=|B|=v-1$ and since $v+f=2+2 n$, we must have $f=n+1$. Therefore we can consider only passports of the form

$$
\left[v_{1}^{m_{1}} \cdots v_{k}^{m_{k}}, 2^{2 n}, f_{1}^{n_{1}} \cdots f_{l}^{n_{l}}\right]
$$

where

$$
\begin{aligned}
m_{1}+\cdots+m_{k} & =n_{1}+\cdots+n_{l}=n+1 \\
\sum m_{j} v_{j} & =\sum n_{i} f_{i}=2 \cdot 2 n
\end{aligned}
$$

Questions

- Is there an interesting family of maps for which matroid self-duality is clearly an invariant?

Questions

- Is there an interesting family of maps for which matroid self-duality is clearly an invariant?

Questions

- Is there an interesting family of maps for which matroid self-duality is clearly an invariant?

$$
\begin{aligned}
& {\left[v_{1}^{m_{1}} \cdots v_{k}^{m_{k}}, 2^{2 n}, f_{1}^{1} 1^{n}\right]} \\
& m_{1}+\cdots+m_{k}=n+1
\end{aligned}
$$

$$
\sum m_{j} v_{j}=f_{1}+n=2 \cdot 2 n
$$

Questions

- Is there an interesting family of maps for which matroid self-duality is clearly an invariant?

$$
\begin{aligned}
& {\left[v_{1}^{m_{1}} \cdots v_{k}^{m_{k}}, 2^{2 n}, f_{1}^{1} 1^{n}\right]} \\
& m_{1}+\cdots+m_{k}=n+1
\end{aligned}
$$

$$
\sum m_{j} v_{j}=f_{1}+n=2 \cdot 2 n
$$

Questions

- What about higher genus?

Questions

- What about higher genus?

Questions

- What about higher genus? We need to pass to Lagrangian (also known as delta or symmetric) matroids.

Thank You!

