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Matroids

Let E={1,2,...,n} be afinite set and let B be a collection of subsets
of E.
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Let E={1,2,...,n} be afinite set and let B be a collection of subsets
of E. A matroid M(E, B) on the ground set E is an ordered pair (E, B)
such that

e B+,

e ifX,YeBandx e X\ Y,thenthereisa y € Y\ X such that
(X\{x}Hu{y}teB.
Elements of B are called bases. Subsets of bases are called
independent sets. Any two bases have the same size.
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Matroids are ubiquitous in mathematics. They arise from
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Examples of matroids

Matroids are ubiquitous in mathematics. They arise from
@ linearly independent subsets of a set of vectors,
@ linearly independent columns of matrices,
@ hyperplane arrangements in R”,
@ point-line incidences in finite geometries,
@ spanning forests in graphs.
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Graphic matroids

Given a graph G we can form a matroid M(G) by taking B to be the
collection of its spanning forests.

Matroidal invariants of dessins MANCHESIER  4/12



Graphic matroids

Given a graph G we can form a matroid M(G) by taking 5 to be the
collection of its spanning forests.

Matroidal invariants of dessins WENCSIEHER A {2



Graphic matroids

Given a graph G we can form a matroid M(G) by taking 5 to be the
collection of its spanning forests.

AN VAN
o7

Matroidal invariants of dessins WENCSIEHER A {2



Graphic matroids

Given a graph G we can form a matroid M(G) by taking 5 to be the
collection of its spanning forests.

AN VAN AN
o7 O

Matroidal invariants of dessins WENCSIEHER A {2



Graphic matroids

Given a graph G we can form a matroid M(G) by taking B to be the
collection of its spanning forests.

Two matroids M(E, B) and M(E’, B") are isomorphic if there is a
bijection f: E — E’ preserving the independence structure.
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Graphic matroids

Given a graph G we can form a matroid M(G) by taking B to be the
collection of its spanning forests.

Two matroids M(E, B) and M(E’, B") are isomorphic if there is a
bijection f: E — E’ preserving the independence structure.
Definition

We say that M is a graphic matroid if M is isomorphic to M(G), for
some graph G.

Not every matroid is graphic.
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example
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o If D= (X,p3)isatree, and D° = (X7, 37) for o € Gal(Q|Q), then
M(D) = M(D?).
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However, matroids are rarely preserved by the action of Gal(Q|Q). In
most examples, the number of bases is not preserved.
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Dual matroid
If M = (E, B) is a matroid on the ground set E, then its dual matroid
M*(E) is the matroid (E, B*) where

B*={E\B|Be B}
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Dual matroid
If M = (E, B) is a matroid on the ground set E, then its dual matroid
M*(E) is the matroid (E, B*) where

B*={E\ B| B e B}.
Clearly, M** = M.

Lemma
If G is planar, then M(G*) = M*(G).

Theorem
A graph G is planar if and only if M*(G) is graphic.

Corollary
A graph G is planar if and only if M*(G) = M(G").

We say that M(G) is self-dual if M(G) = M*(G). The previous corollary
implies that only planar graphs can have self-dual matroids.
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H. Servatius, Self-dual Graphs, Discrete Math. 149).
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Comparing self duality

We have the following implications:

Map self-duality = Graph self-duality = Matroid self-duality

and in general the implications cannot be reversed (B. Servatius,
H. Servatius, Self-dual Graphs, Discrete Math. 149).

If G is 3-connected, then the three notions of self-duality coincide.
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Self-duality in dessins

We will consider only clean genus 0 dessins.
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self-dual if it is isomorphic to its dual dessin (X, 1/5).

Matroidal invariants of dessins MANCHESIER g/ 12



Self-duality in dessins

We will consider only clean genus 0 dessins. A dessin (X, 3) is
self-dual if it is isomorphic to its dual dessin (X, 1/5).

Proposition

If (X, B) is self-dual, then so is (X?, %), for ¢ € Gal(Q|Q). J
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We will consider only clean genus 0 dessins. A dessin (X, ) is
self-dual if it is isomorphic to its dual dessin (X, 1/5).

Proposition
If (X, B) is self-dual, then so is (X?, 37), for o € Gal(Q|Q).

Conjecture

If (X, B) has a self-dual matroid, then (X°, 3?) has a self-dual matroid
as well, for o € Gal(Q|Q).
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self-dual if it is isomorphic to its dual dessin (X, 1/5).

Proposition
If (X, B) is self-dual, then so is (X?, 37), for o € Gal(Q|Q).

Conjecture

If (X, B) has a self-dual matroid, then (X°, 3?) has a self-dual matroid
as well, for o € Gal(Q|Q).
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Self-duality in dessins

We will consider only clean genus 0 dessins. A dessin (X, ) is
self-dual if it is isomorphic to its dual dessin (X, 1/5).

Proposition
If (X, B) is self-dual, then so is (X?, 37), for o € Gal(Q|Q).

Conjecture

If (X, B) has a self-dual matroid, then (X°, 3?) has a self-dual matroid
as well, for o € Gal(Q|Q).

Evidence? Brute force (Adrianov et al, Catalog Of Dessins d’Enfants
With No More Than 4 Edges, J. of Math. Sci. 158(1)).
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Questions

@ Is the matroid self-duality determined by the passport? Is there an
example two maps with the same passport such that one map has
a self-dual matroid but the other one doesn’t?

Matroidal invariants of dessins MANCHESIER 9 /12



Questions

@ Is the matroid self-duality determined by the passport? Is there an
example two maps with the same passport such that one map has
a self-dual matroid but the other one doesn’t?

Matroidal invariants of dessins MANCHESIER 9 /12



Questions

@ Is the matroid self-duality determined by the passport? Is there an
example two maps with the same passport such that one map has
a self-dual matroid but the other one doesn’t?

Suppose M is self-dual and |B| = n.

Matroidal invariants of dessins MANCHESIER 9 /12



Questions

@ Is the matroid self-duality determined by the passport? Is there an
example two maps with the same passport such that one map has
a self-dual matroid but the other one doesn’t?

Suppose M is self-dual and |B| = n. Since |B| = |E \ B| we must have
|E| = 2n.

Matroidal invariants of dessins MANCHESIER 9/ 12



Questions

@ Is the matroid self-duality determined by the passport? Is there an
example two maps with the same passport such that one map has
a self-dual matroid but the other one doesn’t?

Suppose M is self-dual and |B| = n. Since |B| = |E \ B| we must have
|E| = 2n. Moreover, n= |B| = v —1

Matroidal invariants of dessins MANCHESIER 9/ 12



Questions

@ Is the matroid self-duality determined by the passport? Is there an
example two maps with the same passport such that one map has
a self-dual matroid but the other one doesn’t?

Suppose M is self-dual and |B| = n. Since |B| = |E \ B| we must have
|E| = 2n. Moreover, n = |B| = v —1 and since v + f = 2 + 2n, we must
have f =n+1.

Matroidal invariants of dessins MANCHESIER 9/ 12



Questions
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a self-dual matroid but the other one doesn’t?
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Questions

@ Is the matroid self-duality determined by the passport? Is there an
example two maps with the same passport such that one map has
a self-dual matroid but the other one doesn’t?

Suppose M is self-dual and |B| = n. Since |B| = |E \ B| we must have
|E| = 2n. Moreover, n = |B| = v —1 and since v + f = 2 + 2n, we must
have f = n+ 1. Therefore we can consider only passports of the form

my My n2n M ny
[V1 eV ,2 ’f1 fl]’

where
m+--+mg=nm+---+m=n+1,

mv; = nifi=2-2n.
IBUUEDS
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Questions

@ Is there an interesting family of maps for which matroid self-duality
is clearly an invariant?
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Questions

@ What about higher genus?
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Questions

@ What about higher genus? We need to pass to Lagrangian (also
known as delta or symmetric) matroids.
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Thank You!
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