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1. Introduction – General context

Study of abstract regular/chiral polytopes having an automorphism
group that is almost simple.

Results for almost simple groups of type

PSL(2, q) (L.–Schulte, Connor–De Saedeleer–L.)

PSL(3, q) (Brooksbank–Vicinsky)

PSL(4, q) (Brooksbank–L.)

Sz(q) or 2B2(q) (L., L.–Kiefer, L.–Hubard)

An (Fernandes–L., Fernandes–L.–Mixer)

sporadic groups (L.–Vauthier, Hartley–Hulpke, L.–Mixer,
Connor–L.–Mixer, Connor–L.)
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1. Introduction – General context

Ree groups R(q) or 2G2(q), with q = 32e+1 and e > 0.

Discovered by Rimhak Ree in 1960.
Subgroup structure quite similar to that of the Suzuki simple
groups Sz(q), with q = 22e+1 and e > 0.
Exist because of a Frobenius twist, and hence have no counterpart
in characteristic zero.
As groups of Lie-type, they have rank 1, which means that they
act doubly transitively on sets without further structure.
However, the rank 2 groups which are used to define them, do
impose some structure on these sets.
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1. Introduction – General context

Suzuki groups act on “inversive planes”.

Ree groups act on “unitals”.
These unitals, called Ree unitals, have a very complicated and little
accessible geometric structure
No geometric proof of the fact that the automorphism group of a
Ree unital is an almost simple group of Ree type; one needs the
classification of doubly transitive groups to prove this.
Ree groups seem to be misfits in a lot of general theories about
Chevalley groups and their twisted analogues:
- no applications yet of the Curtis-Tits-Phan theory for Ree groups;
- all finite quasisimple groups of Lie type are known to be
presented by two elements and 51 relations, except the Ree groups
in characteristic 3 (Guralnick–Kantor–Kassasbov–Lubotsky 2011).

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



1. Introduction – General context

Suzuki groups act on “inversive planes”.
Ree groups act on “unitals”.

These unitals, called Ree unitals, have a very complicated and little
accessible geometric structure
No geometric proof of the fact that the automorphism group of a
Ree unital is an almost simple group of Ree type; one needs the
classification of doubly transitive groups to prove this.
Ree groups seem to be misfits in a lot of general theories about
Chevalley groups and their twisted analogues:
- no applications yet of the Curtis-Tits-Phan theory for Ree groups;
- all finite quasisimple groups of Lie type are known to be
presented by two elements and 51 relations, except the Ree groups
in characteristic 3 (Guralnick–Kantor–Kassasbov–Lubotsky 2011).

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



1. Introduction – General context

Suzuki groups act on “inversive planes”.
Ree groups act on “unitals”.
These unitals, called Ree unitals, have a very complicated and little
accessible geometric structure

No geometric proof of the fact that the automorphism group of a
Ree unital is an almost simple group of Ree type; one needs the
classification of doubly transitive groups to prove this.
Ree groups seem to be misfits in a lot of general theories about
Chevalley groups and their twisted analogues:
- no applications yet of the Curtis-Tits-Phan theory for Ree groups;
- all finite quasisimple groups of Lie type are known to be
presented by two elements and 51 relations, except the Ree groups
in characteristic 3 (Guralnick–Kantor–Kassasbov–Lubotsky 2011).

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



1. Introduction – General context

Suzuki groups act on “inversive planes”.
Ree groups act on “unitals”.
These unitals, called Ree unitals, have a very complicated and little
accessible geometric structure
No geometric proof of the fact that the automorphism group of a
Ree unital is an almost simple group of Ree type; one needs the
classification of doubly transitive groups to prove this.

Ree groups seem to be misfits in a lot of general theories about
Chevalley groups and their twisted analogues:
- no applications yet of the Curtis-Tits-Phan theory for Ree groups;
- all finite quasisimple groups of Lie type are known to be
presented by two elements and 51 relations, except the Ree groups
in characteristic 3 (Guralnick–Kantor–Kassasbov–Lubotsky 2011).

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



1. Introduction – General context

Suzuki groups act on “inversive planes”.
Ree groups act on “unitals”.
These unitals, called Ree unitals, have a very complicated and little
accessible geometric structure
No geometric proof of the fact that the automorphism group of a
Ree unital is an almost simple group of Ree type; one needs the
classification of doubly transitive groups to prove this.
Ree groups seem to be misfits in a lot of general theories about
Chevalley groups and their twisted analogues:

- no applications yet of the Curtis-Tits-Phan theory for Ree groups;
- all finite quasisimple groups of Lie type are known to be
presented by two elements and 51 relations, except the Ree groups
in characteristic 3 (Guralnick–Kantor–Kassasbov–Lubotsky 2011).

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



1. Introduction – General context

Suzuki groups act on “inversive planes”.
Ree groups act on “unitals”.
These unitals, called Ree unitals, have a very complicated and little
accessible geometric structure
No geometric proof of the fact that the automorphism group of a
Ree unital is an almost simple group of Ree type; one needs the
classification of doubly transitive groups to prove this.
Ree groups seem to be misfits in a lot of general theories about
Chevalley groups and their twisted analogues:
- no applications yet of the Curtis-Tits-Phan theory for Ree groups;

- all finite quasisimple groups of Lie type are known to be
presented by two elements and 51 relations, except the Ree groups
in characteristic 3 (Guralnick–Kantor–Kassasbov–Lubotsky 2011).

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



1. Introduction – General context

Suzuki groups act on “inversive planes”.
Ree groups act on “unitals”.
These unitals, called Ree unitals, have a very complicated and little
accessible geometric structure
No geometric proof of the fact that the automorphism group of a
Ree unital is an almost simple group of Ree type; one needs the
classification of doubly transitive groups to prove this.
Ree groups seem to be misfits in a lot of general theories about
Chevalley groups and their twisted analogues:
- no applications yet of the Curtis-Tits-Phan theory for Ree groups;
- all finite quasisimple groups of Lie type are known to be
presented by two elements and 51 relations, except the Ree groups
in characteristic 3 (Guralnick–Kantor–Kassasbov–Lubotsky 2011).

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



1. Introduction – General context

Ree groups can also be the automorphism groups of abstract chiral
polytopes.

Sah (1969) : every Ree group R(32e+1), with 2e + 1 an odd prime,
is a Hurwitz group;
Jones (1994) extended this result to arbitrary simple Ree groups
R(q), proving in particular that the corresponding presentations
give chiral maps on surfaces.
⇒ R(q) are also automorphism groups of abstract chiral polyhedra.
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2. String C-groups

Definition

A C-group is a group G generated by pairwise distinct involutions
ρ0, . . . , ρn−1 which satisfy the following property, called the
intersection property.

∀J,K ⊆ {0, . . . , n − 1},

〈ρj | j ∈ J〉 ∩ 〈ρk | k ∈ K 〉 = 〈ρj | j ∈ J ∩ K 〉

Definition

A C-group (G , {ρ0, . . . , ρn−1}) is a string C-group if its
generators satisfy the following relations.

(ρjρk)2 = 1G∀j , k ∈ {0, . . . n − 1}with | j − k |≥ 2
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2. String C-groups

Definition

The rank of a string C-group (G , {ρ0, . . . , ρn−1}) is n.

Definition

The Schläfli symbol of a string C-group (G , {ρ0, . . . , ρn−1}) is the
ordered sequence {o(ρ0ρ1), . . . , o(ρn−1ρn)} where o(g) denotes
the order of the element g ∈ G .
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3. Ree groups R(q)

The Ree group G := R(q), with q = 32e+1 and e ≥ 0, is a group
of order q3(q − 1)(q3 + 1).

Natural permutation representation on a Steiner system
S := (Ω,B) = S(2, q + 1, q3 + 1) consisting of
- a set Ω of q3 + 1 elements, the points,
- a family of (q + 1)-subsets B of Ω, the blocks,
such that any two points of Ω lie in exactly one block.
This Steiner system is also called a Ree unital . In particular, G
acts 2-transitively on the points and transitively on the incident
pairs of points and blocks of S.

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



3. Ree groups R(q)

The Ree group G := R(q), with q = 32e+1 and e ≥ 0, is a group
of order q3(q − 1)(q3 + 1).
Natural permutation representation on a Steiner system
S := (Ω,B) = S(2, q + 1, q3 + 1) consisting of

- a set Ω of q3 + 1 elements, the points,
- a family of (q + 1)-subsets B of Ω, the blocks,
such that any two points of Ω lie in exactly one block.
This Steiner system is also called a Ree unital . In particular, G
acts 2-transitively on the points and transitively on the incident
pairs of points and blocks of S.

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



3. Ree groups R(q)

The Ree group G := R(q), with q = 32e+1 and e ≥ 0, is a group
of order q3(q − 1)(q3 + 1).
Natural permutation representation on a Steiner system
S := (Ω,B) = S(2, q + 1, q3 + 1) consisting of
- a set Ω of q3 + 1 elements, the points,

- a family of (q + 1)-subsets B of Ω, the blocks,
such that any two points of Ω lie in exactly one block.
This Steiner system is also called a Ree unital . In particular, G
acts 2-transitively on the points and transitively on the incident
pairs of points and blocks of S.

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



3. Ree groups R(q)

The Ree group G := R(q), with q = 32e+1 and e ≥ 0, is a group
of order q3(q − 1)(q3 + 1).
Natural permutation representation on a Steiner system
S := (Ω,B) = S(2, q + 1, q3 + 1) consisting of
- a set Ω of q3 + 1 elements, the points,
- a family of (q + 1)-subsets B of Ω, the blocks,

such that any two points of Ω lie in exactly one block.
This Steiner system is also called a Ree unital . In particular, G
acts 2-transitively on the points and transitively on the incident
pairs of points and blocks of S.

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



3. Ree groups R(q)

The Ree group G := R(q), with q = 32e+1 and e ≥ 0, is a group
of order q3(q − 1)(q3 + 1).
Natural permutation representation on a Steiner system
S := (Ω,B) = S(2, q + 1, q3 + 1) consisting of
- a set Ω of q3 + 1 elements, the points,
- a family of (q + 1)-subsets B of Ω, the blocks,
such that any two points of Ω lie in exactly one block.

This Steiner system is also called a Ree unital . In particular, G
acts 2-transitively on the points and transitively on the incident
pairs of points and blocks of S.

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



3. Ree groups R(q)

The Ree group G := R(q), with q = 32e+1 and e ≥ 0, is a group
of order q3(q − 1)(q3 + 1).
Natural permutation representation on a Steiner system
S := (Ω,B) = S(2, q + 1, q3 + 1) consisting of
- a set Ω of q3 + 1 elements, the points,
- a family of (q + 1)-subsets B of Ω, the blocks,
such that any two points of Ω lie in exactly one block.
This Steiner system is also called a Ree unital . In particular, G
acts 2-transitively on the points and transitively on the incident
pairs of points and blocks of S.

Dimitri Leemans Groups of Ree type in characteristic 3 acting on polytopes



3. Ree groups R(q)

G has a unique conjugacy class of involutions (Ree, 1960).

Every involution ρ of G has a block B of S as its set of fixed
points, and B is invariant under the centralizer CG (ρ) of ρ in G .
Moreover, CG (ρ) ∼= C2 × PSL2(q), where C2 = 〈ρ〉 and the
PSL2(q)-factor acts on the q + 1 points in B as it does on the
points of the projective line PG (1, q).
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3. Ree groups R(q)

The Ree groups R(q) are simple except when q = 3.
In particular, R(3) ∼= PΓL2(8) ∼= PSL2(8) : C3 and the
commutator subgroup R(3)′ of R(3) is isomorphic to PSL2(8).
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3. Ree groups R(q)

Ck denotes a cyclic group of order k
D2k denotes a dihedral group of order 2k .

Maximal subgroups of G are known (Kleidman 1988).

NG (A) ∼= A : Cq−1 (stabilizer of a point), where A is a
3-Sylow subgroup of G ;

CG (ρ) ∼= C2 × PSL2(q) (stabilizer of a block), where
C2 = 〈ρ〉 and ρ is an involution of G ;

R(q′) (stabilizer of a sub-unital of S), where (q′)p = q and p
is a prime;

NG (Ai ), for i = 1, 2, 3, where Ai is a cyclic subgroup of G of
one of the following kinds:

A1 = C q+1
4

, with NG (A1) ∼= (C 2
2 × D q+1

2
) : C3;

A2 = Cq+1−3e+1 , with NG (A2) ∼= A2 : C6;
A3 = Cq+1+3e+1 , with NG (A3) ∼= A3 : C6.
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3. Ree groups R(q)

The automorphism group Aut(R(q)) of R(q) is given by

Aut(R(q)) ∼= R(q)′ :C2e+1,

so in particular Aut(R(3)) ∼= R(3).
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3. Ree groups R(q)

Theorem (L. (2006))

Among the almost simple groups G with Sz(q) ≤ G ≤ Aut(Sz(q))
and q = 22e+1 6= 2, only the Suzuki group Sz(q) itself is a
C-group. In particular, Sz(q) admits a representation as a string
C-group of rank 3, but not of higher rank.

Theorem (L.–Schulte–Van Maldeghem)

Among the almost simple groups G with R(q) ≤ G ≤ Aut(R(q))
and q = 32e+1 6= 3, only the Ree group R(q) itself is a C-group. In
particular, R(q) admits a representation as a string C-group of
rank 3, but not of higher rank. Moreover, the non-simple Ree
group R(3) is not a C-group.
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4. Rank 3 case

Recall that the fixed point set of an involution in G is a block of
the Steiner system S := S(2, q + 1, q3 + 1).
Pick two involutions ρ0, ρ1 from a maximal subgroup M of G of
type NG (A3) such that ρ0ρ1 has order q + 1 + 3e+1, and let
B0,B1, respectively, denote their blocks of fixed points.
Obviously, B0 ∩ B1 = ∅, for otherwise 〈ρ0, ρ1〉 would lie in the
stabilizer of a point in B0 ∩ B1, which is not possible because of
the order of ρ0ρ1.
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4. Rank 3 case

Recall here that the point stabilizers are maximal subgroups of the
form NG (A) = A : Cq−1, where A is a 3-Sylow subgroup of G .

Now choose an involution ρ2 in CG (ρ0) distinct from ρ0 such that
its block of fixed points B2 meets B1 in a point.
Then B1 ∩ B2 must consist of a single point p (say), and
B0 ∩ B2 = ∅ since the stabilizer of a point does not contain Klein
4-groups.
Then 〈ρ1, ρ2〉 lies in the point stabilizer of p, and hence must a
dihedral group D2n, with n a power of 3.
As 〈ρ0, ρ1〉 is a subgroup of index 3 in M, and ρ0 does not belong
to M, we see that 〈ρ0, ρ1, ρ2〉 = G .
Moreover, since the orders of ρ0ρ1 and ρ1ρ2 are coprime, the
intersection property must hold as well.
Thus (G ,S), with S := {ρ0, ρ1, ρ2}, is a string C-group of rank 3.
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4. Rank ≥ 5 case

Nothing as there is no subgroup D2k × D2l with k, l ≥ 3 in G .
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4. Rank 4 case

Difficult to rule out.
Use the fact that ρ0 ∈ CG (G01) \ NG (G0).
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