# Groups of Ree type in characteristic 3 acting on polytopes 

Dimitri Leemans<br>University of Auckland<br>Joint work with Egon Schulte and Hendrik van Maldeghem

> SIGMAP '14
> July 7,2014

Research supported by Marsden Grant 12-UOA-083

## 1. Introduction - General context

Study of abstract regular/chiral polytopes having an automorphism group that is almost simple.

## 1. Introduction - General context

Study of abstract regular/chiral polytopes having an automorphism group that is almost simple.
Results for almost simple groups of type

## 1. Introduction - General context

Study of abstract regular/chiral polytopes having an automorphism group that is almost simple.
Results for almost simple groups of type

- $\operatorname{PSL}(2, q)$ (L.-Schulte, Connor-De Saedeleer-L.)


## 1. Introduction - General context

Study of abstract regular/chiral polytopes having an automorphism group that is almost simple.
Results for almost simple groups of type

- $\operatorname{PSL}(2, q)$ (L.-Schulte, Connor-De Saedeleer-L.)
- $\operatorname{PSL}(3, q)$ (Brooksbank-Vicinsky)


## 1. Introduction - General context

Study of abstract regular/chiral polytopes having an automorphism group that is almost simple.
Results for almost simple groups of type

- $\operatorname{PSL}(2, q)$ (L.-Schulte, Connor-De Saedeleer-L.)
- $\operatorname{PSL}(3, q)$ (Brooksbank-Vicinsky)
- $\operatorname{PSL}(4, q)$ (Brooksbank-L.)


## 1. Introduction - General context

Study of abstract regular/chiral polytopes having an automorphism group that is almost simple.
Results for almost simple groups of type

- $\operatorname{PSL}(2, q)$ (L.-Schulte, Connor-De Saedeleer-L.)
- $\operatorname{PSL}(3, q)$ (Brooksbank-Vicinsky)
- $\operatorname{PSL}(4, q)$ (Brooksbank-L.)
- $\mathrm{Sz}(q)$ or ${ }^{2} \mathrm{~B}_{2}(q)$ (L., L.-Kiefer, L.-Hubard)


## 1. Introduction - General context

Study of abstract regular/chiral polytopes having an automorphism group that is almost simple.
Results for almost simple groups of type

- PSL(2, q) (L.-Schulte, Connor-De Saedeleer-L.)
- $\operatorname{PSL}(3, q)$ (Brooksbank-Vicinsky)
- $\operatorname{PSL}(4, q)$ (Brooksbank-L.)
- $\mathrm{Sz}(q)$ or ${ }^{2} \mathrm{~B}_{2}(q)$ (L., L.-Kiefer, L.-Hubard)
- $A_{n}$ (Fernandes-L., Fernandes-L.-Mixer)


## 1. Introduction - General context

Study of abstract regular/chiral polytopes having an automorphism group that is almost simple.
Results for almost simple groups of type

- PSL(2, q) (L.-Schulte, Connor-De Saedeleer-L.)
- PSL $(3, q)$ (Brooksbank-Vicinsky)
- $\operatorname{PSL}(4, q)$ (Brooksbank-L.)
- $\mathrm{Sz}(q)$ or ${ }^{2} \mathrm{~B}_{2}(q)$ (L., L.-Kiefer, L.-Hubard)
- $A_{n}$ (Fernandes-L., Fernandes-L.-Mixer)
- sporadic groups (L.-Vauthier, Hartley-Hulpke, L.-Mixer, Connor-L.-Mixer, Connor-L.)


## 1. Introduction - General context

Ree groups $\mathrm{R}(q)$ or ${ }^{2} \mathrm{G}_{2}(q)$, with $q=3^{2 e+1}$ and $e>0$.

## 1. Introduction - General context

Ree groups $\mathrm{R}(q)$ or ${ }^{2} \mathrm{G}_{2}(q)$, with $q=3^{2 e+1}$ and $e>0$.

Discovered by Rimhak Ree in 1960.

## 1. Introduction - General context

Ree groups $\mathrm{R}(q)$ or ${ }^{2} \mathrm{G}_{2}(q)$, with $q=3^{2 e+1}$ and $e>0$.

Discovered by Rimhak Ree in 1960.
Subgroup structure quite similar to that of the Suzuki simple groups $\mathrm{Sz}(q)$, with $q=2^{2 e+1}$ and $e>0$.

## 1. Introduction - General context

Ree groups $\mathrm{R}(q)$ or ${ }^{2} \mathrm{G}_{2}(q)$, with $q=3^{2 e+1}$ and $e>0$.

Discovered by Rimhak Ree in 1960.
Subgroup structure quite similar to that of the Suzuki simple groups $\operatorname{Sz}(q)$, with $q=2^{2 e+1}$ and $e>0$.
Exist because of a Frobenius twist, and hence have no counterpart in characteristic zero.

## 1. Introduction - General context

Ree groups $\mathrm{R}(q)$ or ${ }^{2} \mathrm{G}_{2}(q)$, with $q=3^{2 e+1}$ and $e>0$.

Discovered by Rimhak Ree in 1960.
Subgroup structure quite similar to that of the Suzuki simple groups $\mathrm{Sz}(q)$, with $q=2^{2 e+1}$ and $e>0$.
Exist because of a Frobenius twist, and hence have no counterpart in characteristic zero.
As groups of Lie-type, they have rank 1, which means that they act doubly transitively on sets without further structure.

## 1. Introduction - General context

Ree groups $\mathrm{R}(q)$ or ${ }^{2} \mathrm{G}_{2}(q)$, with $q=3^{2 e+1}$ and $e>0$.

Discovered by Rimhak Ree in 1960.
Subgroup structure quite similar to that of the Suzuki simple groups $\mathrm{Sz}(q)$, with $q=2^{2 e+1}$ and $e>0$.
Exist because of a Frobenius twist, and hence have no counterpart in characteristic zero.
As groups of Lie-type, they have rank 1, which means that they act doubly transitively on sets without further structure. However, the rank 2 groups which are used to define them, do impose some structure on these sets.

## 1. Introduction - General context

Suzuki groups act on "inversive planes".

## 1. Introduction - General context

Suzuki groups act on "inversive planes". Ree groups act on "unitals".

## 1. Introduction - General context

Suzuki groups act on "inversive planes". Ree groups act on "unitals".
These unitals, called Ree unitals, have a very complicated and little accessible geometric structure

## 1. Introduction - General context

Suzuki groups act on "inversive planes".
Ree groups act on "unitals".
These unitals, called Ree unitals, have a very complicated and little accessible geometric structure
No geometric proof of the fact that the automorphism group of a Ree unital is an almost simple group of Ree type; one needs the classification of doubly transitive groups to prove this.

## 1. Introduction - General context

Suzuki groups act on "inversive planes".
Ree groups act on "unitals".
These unitals, called Ree unitals, have a very complicated and little accessible geometric structure
No geometric proof of the fact that the automorphism group of a Ree unital is an almost simple group of Ree type; one needs the classification of doubly transitive groups to prove this.
Ree groups seem to be misfits in a lot of general theories about Chevalley groups and their twisted analogues:

## 1. Introduction - General context

Suzuki groups act on "inversive planes".
Ree groups act on "unitals".
These unitals, called Ree unitals, have a very complicated and little accessible geometric structure
No geometric proof of the fact that the automorphism group of a Ree unital is an almost simple group of Ree type; one needs the classification of doubly transitive groups to prove this.
Ree groups seem to be misfits in a lot of general theories about Chevalley groups and their twisted analogues:

- no applications yet of the Curtis-Tits-Phan theory for Ree groups;


## 1. Introduction - General context

Suzuki groups act on "inversive planes".
Ree groups act on "unitals".
These unitals, called Ree unitals, have a very complicated and little accessible geometric structure
No geometric proof of the fact that the automorphism group of a Ree unital is an almost simple group of Ree type; one needs the classification of doubly transitive groups to prove this.
Ree groups seem to be misfits in a lot of general theories about Chevalley groups and their twisted analogues:

- no applications yet of the Curtis-Tits-Phan theory for Ree groups;
- all finite quasisimple groups of Lie type are known to be presented by two elements and 51 relations, except the Ree groups in characteristic 3 (Guralnick-Kantor-Kassasbov-Lubotsky 2011).


## 1. Introduction - General context

Ree groups can also be the automorphism groups of abstract chiral polytopes.

## 1. Introduction - General context

Ree groups can also be the automorphism groups of abstract chiral polytopes.
Sah (1969) : every Ree group $\mathrm{R}\left(3^{2 e+1}\right)$, with $2 e+1$ an odd prime, is a Hurwitz group;

## 1. Introduction - General context

Ree groups can also be the automorphism groups of abstract chiral polytopes.
Sah (1969) : every Ree group $\mathrm{R}\left(3^{2 e+1}\right)$, with $2 e+1$ an odd prime, is a Hurwitz group; Jones (1994) extended this result to arbitrary simple Ree groups $R(q)$, proving in particular that the corresponding presentations give chiral maps on surfaces.

## 1. Introduction - General context

Ree groups can also be the automorphism groups of abstract chiral polytopes.
Sah (1969) : every Ree group $\mathrm{R}\left(3^{2 e+1}\right)$, with $2 e+1$ an odd prime, is a Hurwitz group;
Jones (1994) extended this result to arbitrary simple Ree groups $R(q)$, proving in particular that the corresponding presentations give chiral maps on surfaces.
$\Rightarrow \mathrm{R}(q)$ are also automorphism groups of abstract chiral polyhedra.

## 2. String C-groups

## Definition

A C-group is a group $G$ generated by pairwise distinct involutions $\rho_{0}, \ldots, \rho_{n-1}$ which satisfy the following property, called the intersection property.

$$
\begin{gathered}
\forall J, K \subseteq\{0, \ldots, n-1\} \\
\left\langle\rho_{j} \mid j \in J\right\rangle \cap\left\langle\rho_{k} \mid k \in K\right\rangle=\left\langle\rho_{j} \mid j \in J \cap K\right\rangle
\end{gathered}
$$

## 2. String C-groups

## Definition

A C-group is a group $G$ generated by pairwise distinct involutions $\rho_{0}, \ldots, \rho_{n-1}$ which satisfy the following property, called the intersection property.

$$
\forall J, K \subseteq\{0, \ldots, n-1\}
$$

$$
\left\langle\rho_{j} \mid j \in J\right\rangle \cap\left\langle\rho_{k} \mid k \in K\right\rangle=\left\langle\rho_{j} \mid j \in J \cap K\right\rangle
$$

## Definition

A C-group ( $G,\left\{\rho_{0}, \ldots, \rho_{n-1}\right\}$ ) is a string C-group if its generators satisfy the following relations.

$$
\left(\rho_{j} \rho_{k}\right)^{2}=1{ }_{G} \forall j, k \in\{0, \ldots n-1\} \text { with }|j-k| \geq 2
$$

## 2. String C-groups

## Definition

The rank of a string C-group $\left(G,\left\{\rho_{0}, \ldots, \rho_{n-1}\right\}\right)$ is $n$.

## 2. String C-groups

## Definition

The rank of a string C-group $\left(G,\left\{\rho_{0}, \ldots, \rho_{n-1}\right\}\right)$ is $n$.

## Definition

The Schläfli symbol of a string C-group ( $G,\left\{\rho_{0}, \ldots, \rho_{n-1}\right\}$ ) is the ordered sequence $\left\{o\left(\rho_{0} \rho_{1}\right), \ldots, o\left(\rho_{n-1} \rho_{n}\right)\right\}$ where $o(g)$ denotes the order of the element $g \in G$.

## 3. Ree groups $\mathrm{R}(q)$

The Ree group $G:=\mathrm{R}(q)$, with $q=3^{2 e+1}$ and $e \geq 0$, is a group of order $q^{3}(q-1)\left(q^{3}+1\right)$.

## 3. Ree groups $\mathrm{R}(q)$

The Ree group $G:=R(q)$, with $q=3^{2 e+1}$ and $e \geq 0$, is a group of order $q^{3}(q-1)\left(q^{3}+1\right)$.
Natural permutation representation on a Steiner system
$\mathcal{S}:=(\Omega, \mathcal{B})=S\left(2, q+1, q^{3}+1\right)$ consisting of

## 3. Ree groups $R(q)$

The Ree group $G:=\mathrm{R}(q)$, with $q=3^{2 e+1}$ and $e \geq 0$, is a group of order $q^{3}(q-1)\left(q^{3}+1\right)$.
Natural permutation representation on a Steiner system
$\mathcal{S}:=(\Omega, \mathcal{B})=S\left(2, q+1, q^{3}+1\right)$ consisting of

- a set $\Omega$ of $q^{3}+1$ elements, the points,


## 3. Ree groups $R(q)$

The Ree group $G:=\mathrm{R}(q)$, with $q=3^{2 e+1}$ and $e \geq 0$, is a group of order $q^{3}(q-1)\left(q^{3}+1\right)$.
Natural permutation representation on a Steiner system
$\mathcal{S}:=(\Omega, \mathcal{B})=S\left(2, q+1, q^{3}+1\right)$ consisting of

- a set $\Omega$ of $q^{3}+1$ elements, the points,
- a family of $(q+1)$-subsets $\mathcal{B}$ of $\Omega$, the blocks,


## 3. Ree groups $\mathrm{R}(q)$

The Ree group $G:=\mathrm{R}(q)$, with $q=3^{2 e+1}$ and $e \geq 0$, is a group of order $q^{3}(q-1)\left(q^{3}+1\right)$.
Natural permutation representation on a Steiner system
$\mathcal{S}:=(\Omega, \mathcal{B})=S\left(2, q+1, q^{3}+1\right)$ consisting of

- a set $\Omega$ of $q^{3}+1$ elements, the points,
- a family of $(q+1)$-subsets $\mathcal{B}$ of $\Omega$, the blocks, such that any two points of $\Omega$ lie in exactly one block.


## 3. Ree groups $R(q)$

The Ree group $G:=\mathrm{R}(q)$, with $q=3^{2 e+1}$ and $e \geq 0$, is a group of order $q^{3}(q-1)\left(q^{3}+1\right)$.
Natural permutation representation on a Steiner system
$\mathcal{S}:=(\Omega, \mathcal{B})=S\left(2, q+1, q^{3}+1\right)$ consisting of

- a set $\Omega$ of $q^{3}+1$ elements, the points,
- a family of $(q+1)$-subsets $\mathcal{B}$ of $\Omega$, the blocks, such that any two points of $\Omega$ lie in exactly one block.
This Steiner system is also called a Ree unital. In particular, $G$ acts 2-transitively on the points and transitively on the incident pairs of points and blocks of $\mathcal{S}$.


## 3. Ree groups $\mathrm{R}(q)$

$G$ has a unique conjugacy class of involutions (Ree, 1960).

## 3. Ree groups $\mathrm{R}(q)$

$G$ has a unique conjugacy class of involutions (Ree, 1960). Every involution $\rho$ of $G$ has a block $B$ of $\mathcal{S}$ as its set of fixed points, and $B$ is invariant under the centralizer $C_{G}(\rho)$ of $\rho$ in $G$.

## 3. Ree groups $\mathrm{R}(q)$

$G$ has a unique conjugacy class of involutions (Ree, 1960). Every involution $\rho$ of $G$ has a block $B$ of $\mathcal{S}$ as its set of fixed points, and $B$ is invariant under the centralizer $C_{G}(\rho)$ of $\rho$ in $G$. Moreover, $C_{G}(\rho) \cong C_{2} \times \operatorname{PSL}_{2}(q)$, where $C_{2}=\langle\rho\rangle$ and the $\operatorname{PSL}_{2}(q)$-factor acts on the $q+1$ points in $B$ as it does on the points of the projective line $P G(1, q)$.

## 3. Ree groups $\mathrm{R}(q)$

The Ree groups $\mathrm{R}(q)$ are simple except when $q=3$. In particular, $\mathrm{R}(3) \cong P \Gamma L_{2}(8) \cong \mathrm{PSL}_{2}(8): C_{3}$ and the commutator subgroup $R(3)^{\prime}$ of $R(3)$ is isomorphic to $\mathrm{PSL}_{2}(8)$.

## 3. Ree groups $\mathrm{R}(q)$

$C_{k}$ denotes a cyclic group of order $k$ $D_{2 k}$ denotes a dihedral group of order $2 k$.

## 3. Ree groups $\mathrm{R}(q)$

$C_{k}$ denotes a cyclic group of order $k$
$D_{2 k}$ denotes a dihedral group of order $2 k$.
Maximal subgroups of $G$ are known (Kleidman 1988).

- $N_{G}(A) \cong A: C_{q-1}$ (stabilizer of a point), where $A$ is a 3-Sylow subgroup of $G$;
- $C_{G}(\rho) \cong C_{2} \times \operatorname{PSL}_{2}(q)$ (stabilizer of a block), where $C_{2}=\langle\rho\rangle$ and $\rho$ is an involution of $G$;
- $\mathrm{R}\left(q^{\prime}\right)$ (stabilizer of a sub-unital of $\mathcal{S}$ ), where $\left(q^{\prime}\right)^{p}=q$ and $p$ is a prime;
- $N_{G}\left(A_{i}\right)$, for $i=1,2,3$, where $A_{i}$ is a cyclic subgroup of $G$ of one of the following kinds:
- $A_{1}=C_{\frac{q+1}{4}}$, with $N_{G}\left(A_{1}\right) \cong\left(C_{2}^{2} \times D_{\frac{q+1}{2}}\right): C_{3}$;
- $A_{2}=C_{q+1-3^{e+1}}$, with $N_{G}\left(A_{2}\right) \cong A_{2}: C_{6}$;
- $A_{3}=C_{q+1+3^{e+1}}$, with $N_{G}\left(A_{3}\right) \cong A_{3}: C_{6}$.


## 3. Ree groups $\mathrm{R}(q)$

The automorphism group $\operatorname{Aut}(R(q))$ of $R(q)$ is given by

$$
\operatorname{Aut}(\mathrm{R}(q)) \cong \mathrm{R}(q)^{\prime}: C_{2 e+1}
$$

so in particular $\operatorname{Aut}(R(3)) \cong R(3)$.

## 3. Ree groups $R(q)$

## Theorem (L. (2006))

Among the almost simple groups $G$ with $\mathrm{Sz}(q) \leq G \leq \operatorname{Aut}(\mathrm{Sz}(q))$ and $q=2^{2 e+1} \neq 2$, only the Suzuki group $\mathrm{Sz}(q)$ itself is a C-group. In particular, $\mathrm{Sz}(q)$ admits a representation as a string C-group of rank 3, but not of higher rank.

## 3. Ree groups $\mathrm{R}(q)$

## Theorem (L. (2006))

Among the almost simple groups $G$ with $\mathrm{Sz}(q) \leq G \leq \operatorname{Aut}(\mathrm{Sz}(q))$ and $q=2^{2 e+1} \neq 2$, only the Suzuki group $\mathrm{Sz}(q)$ itself is a
C-group. In particular, $\mathrm{Sz}(q)$ admits a representation as a string C-group of rank 3, but not of higher rank.

## Theorem (L.-Schulte-Van Maldeghem)

Among the almost simple groups $G$ with $\mathrm{R}(q) \leq G \leq \operatorname{Aut}(\mathrm{R}(q))$ and $q=3^{2 e+1} \neq 3$, only the Ree group $\mathrm{R}(q)$ itself is a $C$-group. In particular, $\mathrm{R}(q)$ admits a representation as a string $C$-group of rank 3, but not of higher rank. Moreover, the non-simple Ree group $\mathrm{R}(3)$ is not a C-group.

## 4. Rank 3 case

## 4. Rank 3 case

Recall that the fixed point set of an involution in $G$ is a block of the Steiner system $\mathcal{S}:=S\left(2, q+1, q^{3}+1\right)$.

## 4. Rank 3 case

Recall that the fixed point set of an involution in $G$ is a block of the Steiner system $\mathcal{S}:=S\left(2, q+1, q^{3}+1\right)$.
Pick two involutions $\rho_{0}, \rho_{1}$ from a maximal subgroup $M$ of $G$ of type $N_{G}\left(A_{3}\right)$ such that $\rho_{0} \rho_{1}$ has order $q+1+3^{e+1}$, and let $B_{0}, B_{1}$, respectively, denote their blocks of fixed points.

## 4. Rank 3 case

Recall that the fixed point set of an involution in $G$ is a block of the Steiner system $\mathcal{S}:=S\left(2, q+1, q^{3}+1\right)$.
Pick two involutions $\rho_{0}, \rho_{1}$ from a maximal subgroup $M$ of $G$ of type $N_{G}\left(A_{3}\right)$ such that $\rho_{0} \rho_{1}$ has order $q+1+3^{e+1}$, and let $B_{0}, B_{1}$, respectively, denote their blocks of fixed points. Obviously, $B_{0} \cap B_{1}=\emptyset$, for otherwise $\left\langle\rho_{0}, \rho_{1}\right\rangle$ would lie in the stabilizer of a point in $B_{0} \cap B_{1}$, which is not possible because of the order of $\rho_{0} \rho_{1}$.

## 4. Rank 3 case

Recall here that the point stabilizers are maximal subgroups of the form $N_{G}(A)=A: C_{q-1}$, where $A$ is a 3-Sylow subgroup of $G$.

## 4. Rank 3 case

Recall here that the point stabilizers are maximal subgroups of the form $N_{G}(A)=A: C_{q-1}$, where $A$ is a 3-Sylow subgroup of $G$. Now choose an involution $\rho_{2}$ in $C_{G}\left(\rho_{0}\right)$ distinct from $\rho_{0}$ such that its block of fixed points $B_{2}$ meets $B_{1}$ in a point.

## 4. Rank 3 case

Recall here that the point stabilizers are maximal subgroups of the form $N_{G}(A)=A: C_{q-1}$, where $A$ is a 3-Sylow subgroup of $G$. Now choose an involution $\rho_{2}$ in $C_{G}\left(\rho_{0}\right)$ distinct from $\rho_{0}$ such that its block of fixed points $B_{2}$ meets $B_{1}$ in a point.
Then $B_{1} \cap B_{2}$ must consist of a single point $p$ (say), and
$B_{0} \cap B_{2}=\emptyset$ since the stabilizer of a point does not contain Klein 4-groups.

## 4. Rank 3 case

Recall here that the point stabilizers are maximal subgroups of the form $N_{G}(A)=A: C_{q-1}$, where $A$ is a 3-Sylow subgroup of $G$. Now choose an involution $\rho_{2}$ in $C_{G}\left(\rho_{0}\right)$ distinct from $\rho_{0}$ such that its block of fixed points $B_{2}$ meets $B_{1}$ in a point.
Then $B_{1} \cap B_{2}$ must consist of a single point $p$ (say), and
$B_{0} \cap B_{2}=\emptyset$ since the stabilizer of a point does not contain Klein 4-groups.
Then $\left\langle\rho_{1}, \rho_{2}\right\rangle$ lies in the point stabilizer of $p$, and hence must a dihedral group $D_{2 n}$, with $n$ a power of 3 .

## 4. Rank 3 case

Recall here that the point stabilizers are maximal subgroups of the form $N_{G}(A)=A: C_{q-1}$, where $A$ is a 3-Sylow subgroup of $G$. Now choose an involution $\rho_{2}$ in $C_{G}\left(\rho_{0}\right)$ distinct from $\rho_{0}$ such that its block of fixed points $B_{2}$ meets $B_{1}$ in a point.
Then $B_{1} \cap B_{2}$ must consist of a single point $p$ (say), and
$B_{0} \cap B_{2}=\emptyset$ since the stabilizer of a point does not contain Klein 4-groups.
Then $\left\langle\rho_{1}, \rho_{2}\right\rangle$ lies in the point stabilizer of $p$, and hence must a dihedral group $D_{2 n}$, with $n$ a power of 3 .
As $\left\langle\rho_{0}, \rho_{1}\right\rangle$ is a subgroup of index 3 in $M$, and $\rho_{0}$ does not belong to $M$, we see that $\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle=G$.

## 4. Rank 3 case

Recall here that the point stabilizers are maximal subgroups of the form $N_{G}(A)=A: C_{q-1}$, where $A$ is a 3-Sylow subgroup of $G$. Now choose an involution $\rho_{2}$ in $C_{G}\left(\rho_{0}\right)$ distinct from $\rho_{0}$ such that its block of fixed points $B_{2}$ meets $B_{1}$ in a point.
Then $B_{1} \cap B_{2}$ must consist of a single point $p$ (say), and
$B_{0} \cap B_{2}=\emptyset$ since the stabilizer of a point does not contain Klein 4-groups.
Then $\left\langle\rho_{1}, \rho_{2}\right\rangle$ lies in the point stabilizer of $p$, and hence must a dihedral group $D_{2 n}$, with $n$ a power of 3 .
As $\left\langle\rho_{0}, \rho_{1}\right\rangle$ is a subgroup of index 3 in $M$, and $\rho_{0}$ does not belong to $M$, we see that $\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle=G$.
Moreover, since the orders of $\rho_{0} \rho_{1}$ and $\rho_{1} \rho_{2}$ are coprime, the intersection property must hold as well.

## 4. Rank 3 case

Recall here that the point stabilizers are maximal subgroups of the form $N_{G}(A)=A: C_{q-1}$, where $A$ is a 3-Sylow subgroup of $G$. Now choose an involution $\rho_{2}$ in $C_{G}\left(\rho_{0}\right)$ distinct from $\rho_{0}$ such that its block of fixed points $B_{2}$ meets $B_{1}$ in a point.
Then $B_{1} \cap B_{2}$ must consist of a single point $p$ (say), and
$B_{0} \cap B_{2}=\emptyset$ since the stabilizer of a point does not contain Klein 4-groups.
Then $\left\langle\rho_{1}, \rho_{2}\right\rangle$ lies in the point stabilizer of $p$, and hence must a dihedral group $D_{2 n}$, with $n$ a power of 3 .
As $\left\langle\rho_{0}, \rho_{1}\right\rangle$ is a subgroup of index 3 in $M$, and $\rho_{0}$ does not belong to $M$, we see that $\left\langle\rho_{0}, \rho_{1}, \rho_{2}\right\rangle=G$.
Moreover, since the orders of $\rho_{0} \rho_{1}$ and $\rho_{1} \rho_{2}$ are coprime, the intersection property must hold as well.
Thus $(G, S)$, with $S:=\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$, is a string C-group of rank 3.

## 4. $\operatorname{Rank} \geq 5$ case

Nothing as there is no subgroup $D_{2 k} \times D_{2 /}$ with $k, I \geq 3$ in $G$.

## 4. Rank 4 case

Difficult to rule out.
Use the fact that $\rho_{0} \in C_{G}\left(G_{01}\right) \backslash N_{G}\left(G_{0}\right)$.

