Young Soo Kwon (Yeungnam University, Korea) July 8, 2014, SIGMAP 2014 ELIM Conference Center, West Malvern, U.K.

- 1. Introductions of maps and regular maps
- 2. Introduction of Mobius regular maps
- 3. Classification of some Mobius regular maps

1. A (topological) map $\mathfrak{M}=G \to S$ is a 2-cell embedding of a graph *G* into a closed surface *S*.

[Definition]

1. A (topological) map $\mathfrak{M}=G \to S$ is a 2-cell embedding of a graph *G* into a closed surface *S*.

2. For any map $\mathfrak{M}=G \to S$, a mutually incident

vertex-edge-face triple is called a *flag* of \mathfrak{M} .

The set of flags of \mathfrak{M} is denoted by $F(\mathfrak{M})$

[Definition]

1. A (topological) map $\mathfrak{M}=G \to S$ is a 2-cell embedding of a graph *G* into a closed surface *S*.

2. For any map $\mathfrak{M}=G \to S$, a mutually incident

vertex-edge-face triple is called a *flag* of \mathfrak{M} .

The set of flags of \mathfrak{M} is denoted by $F(\mathfrak{M})$

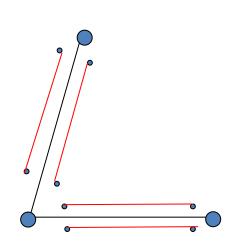
[Definition]

1. A (topological) map $\mathfrak{M}=G \to S$ is a 2-cell embedding of a graph *G* into a closed surface *S*.

2. For any map $\mathfrak{M}=G \to S$, a mutually incident

vertex-edge-face triple is called a *flag* of \mathfrak{M} .

The set of flags of \mathfrak{M} is denoted by $F(\mathfrak{M})$



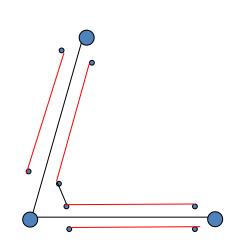
[Definition]

1. A (topological) map $\mathfrak{M}=G \to S$ is a 2-cell embedding of a graph *G* into a closed surface *S*.

2. For any map $\mathfrak{M}=G \to S$, a mutually incident

vertex-edge-face triple is called a *flag* of \mathfrak{M} .

The set of flags of \mathfrak{M} is denoted by $F(\mathfrak{M})$



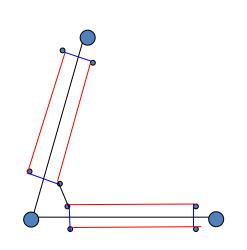
[Definition]

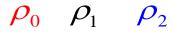
1. A (topological) map $\mathfrak{M}=G \to S$ is a 2-cell embedding of a graph *G* into a closed surface *S*.

2. For any map $\mathfrak{M}=G \to S$, a mutually incident

vertex-edge-face triple is called a *flag* of \mathfrak{M} .

The set of flags of \mathfrak{M} is denoted by $F(\mathfrak{M})$





[Definition] 1. A (topological) map $\mathfrak{M}=G \to S$ is a 2-cell embedding

of a graph G into a closed surface S.

2. For any map $\mathfrak{M}=G \to S$, a mutually incident

vertex-edge-face triple is called a *flag* of \mathfrak{M} .

The set of flags of \mathfrak{M} is denoted by $F(\mathfrak{M})$

Any map $\mathfrak{M}=G \to S$ can be described by three involutions (ρ_0, ρ_1, ρ_2) acting on F(\mathfrak{M}).

Note that $\langle \rho_0, \rho_1, \rho_2 \rangle$ acts transitively on F(\mathfrak{M}) and $(\rho_0 \rho_2)^2 = 1$. Conversely, any quadruple (*F*; ρ_0, ρ_1, ρ_2) satisfying (1) ρ_0, ρ_1, ρ_2 are fixed point free involutions of *F*. (2) $\langle \rho_0, \rho_1, \rho_2 \rangle$ acts transitively on *F*. (3) $(\rho_0 \rho_2)^2 = 1$

can descibe a topological map.

Conversely, any quadruple (*F*; ρ_0, ρ_1, ρ_2) satisfying (1) ρ_0, ρ_1, ρ_2 are fixed point free involutions of *F*. (2) $\langle \rho_0, \rho_1, \rho_2 \rangle$ acts transitively on *F*. (3) $(\rho_0 \rho_2)^2 = 1$

can descibe a topological map.

We call $\mathfrak{M} = (F; \rho_0, \rho_1, \rho_2)$ a *combinatorial map* and

 $\langle \rho_0, \rho_1, \rho_2 \rangle$ is called a *monodromy group* denoted by Mon(\mathfrak{M}).

Conversely, any quadruple (*F*; ρ_0, ρ_1, ρ_2) satisfying (1) ρ_0, ρ_1, ρ_2 are fixed point free involutions of *F*. (2) $\langle \rho_0, \rho_1, \rho_2 \rangle$ acts transitively on *F*. (3) $(\rho_0 \rho_2)^2 = 1$

can descibe a topological map.

We call $\mathfrak{M} = (F; \rho_0, \rho_1, \rho_2)$ a *combinatorial map* and

 $\langle \rho_0, \rho_1, \rho_2 \rangle$ is called a *monodromy group* denoted by Mon(\mathfrak{M}).

1. For any map $\mathfrak{M}=G \to S$, a *map automorphism* is a graph automorphism of *G* which can be extended to self-homeomorphism of the surface *S* in the embedding.

2. $|\operatorname{Aut}(\mathfrak{M})| \leq |F(\mathfrak{M})| \leq |\langle \rho_0, \rho_1, \rho_2 \rangle|$

2. $|\operatorname{Aut}(\mathfrak{M})| \leq |F(\mathfrak{M})| \leq |\langle \rho_0, \rho_1, \rho_2 \rangle|$

One equality holds \Leftrightarrow both equalities hold \Leftrightarrow Aut $(\mathfrak{M}) \simeq \langle \rho_0, \rho_1, \rho_2 \rangle$

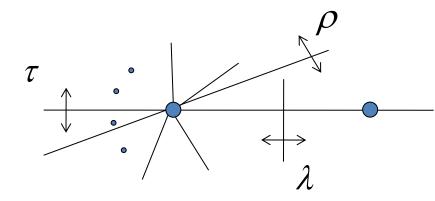
In this case, \mathfrak{M} is called a *regular map* or *regular embedding* of *G*.

2. $|\operatorname{Aut}(\mathfrak{M})| \leq |F(\mathfrak{M})| \leq |\langle \rho_0, \rho_1, \rho_2 \rangle|$

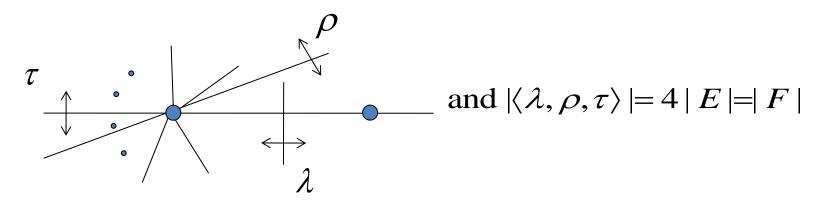
One equality holds \Leftrightarrow both equalities hold \Leftrightarrow Aut $(\mathfrak{M}) \simeq \langle \rho_0, \rho_1, \rho_2 \rangle$

In this case, \mathfrak{M} is called a *regular map* or *regular embedding* of *G*.

Classification of regular maps are pursued by fixed graphs, fixed surfaces, fixed automorphisms, etc.

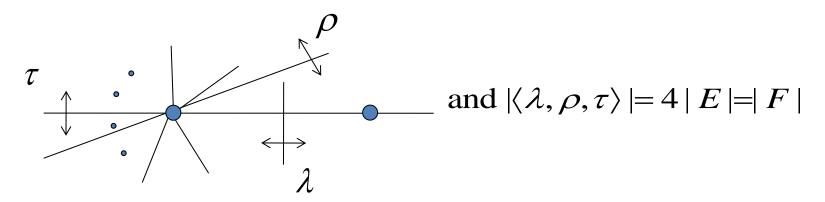


and $|\langle \lambda, \rho, \tau \rangle |= 4 | E |=| F |$



We call such pair (λ, ρ, τ) an admissible triple for G.

 $(\lambda, \rho, \tau) \leftrightarrow (\rho_0, \rho_1, \rho_2) \text{ and } \langle \lambda, \rho, \tau \rangle \simeq \langle \rho_0, \rho_1, \rho_2 \rangle.$



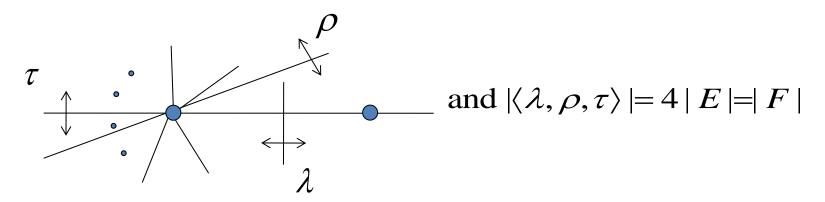
We call such pair (λ, ρ, τ) an admissible triple for G.

$$(\lambda, \rho, \tau) \leftrightarrow (\rho_0, \rho_1, \rho_2) \text{ and } \langle \lambda, \rho, \tau \rangle \simeq \langle \rho_0, \rho_1, \rho_2 \rangle.$$

[Theorem] ('99, Gardiner et. al)

A graph G has a regular map iff there exists an admissible triple for G.

The number of regular embeddings of G up to isomorphism is the number of orbits of admissible triples (ρ, λ, τ) for G under the conjugate action by Aut(G).



We call such pair (λ, ρ, τ) an admissible triple for G.

$$(\lambda, \rho, \tau) \leftrightarrow (\rho_0, \rho_1, \rho_2) \text{ and } \langle \lambda, \rho, \tau \rangle \simeq \langle \rho_0, \rho_1, \rho_2 \rangle.$$

[Theorem] ('99, Gardiner et. al)

A graph G has a regular map iff there exists an admissible triple for G.

The number of regular embeddings of G up to isomorphism is the number of orbits of admissible triples (ρ, λ, τ) for G under the conjugate action by Aut(G).

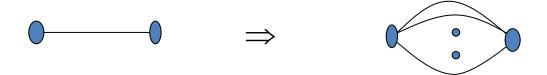
nonorientable $\Leftrightarrow \langle \lambda, \rho, \tau \rangle = \langle \rho \tau, \lambda \tau \rangle \Leftrightarrow \tau \in \langle \rho \tau, \lambda \tau \rangle.$

Introduction of Mobius regular maps

G: graph \Rightarrow $G^{(m)}$: m-multiple graph of G.

Introduction of Mobius regular maps

G: graph \Rightarrow $G^{(m)}$: m-multiple graph of G.



 \mathfrak{M} : an embedding of $G^{(m)} \Rightarrow G^{(m)}$: underlying graph of \mathfrak{M}

 \mathfrak{M} : *m*-multiple embedding of *G*

G: underlying simple graph of \mathfrak{M}

Introduction of Mobius regular maps

G: graph \Rightarrow $G^{(m)}$: m-multiple graph of G.

 \mathfrak{M} : an embedding of $G^{(m)} \Rightarrow G^{(m)}$: underlying graph of \mathfrak{M}

 \mathfrak{M} : *m*-multiple embedding of *G*

G: underlying simple graph of \mathfrak{M}

For a regular *m*-multiple embedding \mathfrak{M} of *G*, let valency = km, Aut(\mathfrak{M})= $\langle \lambda, \rho, \tau \rangle$, Mon(\mathfrak{M})= $\langle \rho_0, \rho_1, \rho_2 \rangle$ $r = \rho \tau$ $\ell = \lambda \tau$ $R = \rho_1 \rho_2$ $L = \rho_0 \rho_2$

1. Any two parallel edges have neighborhood homeomorphic to a disc.

2. Any two parallel edges have neighborhood homeomorphic to a Möbius band.

1. Any two parallel edges have neighborhood homeomorphic to a disc.

 $m \ge 2$, \mathfrak{M} :orientable or nonorientable $\operatorname{core}(\langle r \rangle) = \langle r^k \rangle$

2. Any two parallel edges have neighborhood homeomorphic to a Möbius band. m = 2, \mathfrak{M} : nonorientable $\langle r \rangle$: core-free

1. Any two parallel edges have neighborhood homeomorphic to a disc. $m \ge 2$, \mathfrak{M} :orientable or nonorientable $\operatorname{core}(\langle r \rangle) = \langle r^k \rangle$ Restriction of embedding on $\circ \circ$ $\circ \circ$ orientable regular embedding of dipole $D_m \leftrightarrow (\rho_0, \rho_1 R^k, \rho_2)$

2. Any two parallel edges have neighborhood homeomorphic to a Möbius band. m = 2, \mathfrak{M} : nonorientable $\langle r \rangle$: core-free

1. Any two parallel edges have neighborhood homeomorphic to a disc.

 $m \ge 2$, \mathfrak{M} :orientable or nonorientable $\operatorname{core}(\langle r \rangle) = \langle r^k \rangle$

Restriction of embedding on 🦿 ;

orientable regular embedding of dipole $D_m \leftrightarrow (\rho_0, \rho_1 R^k, \rho_2)$

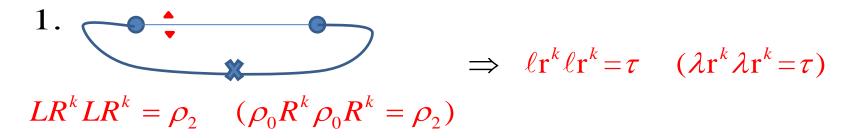
 \mathfrak{M} / C : regular embedding of underlying simple graph G \mathfrak{M} : orientable $\Leftrightarrow \mathfrak{M} / C$: orientable

2. Any two parallel edges have neighborhood homeomorphic to a Möbius band.

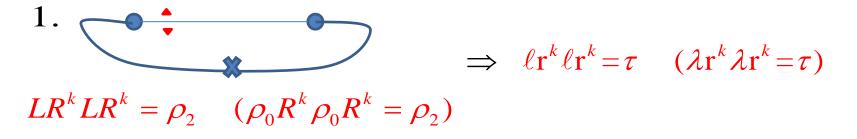
m = 2, \mathfrak{M} : nonorientable $\langle r \rangle$: core-free

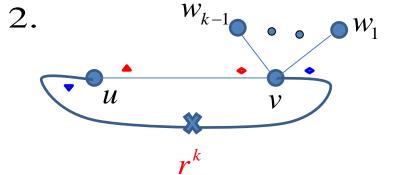
Möbius regular embedding of G

 \mathfrak{M} : Möbius regular embedding of G with valency 2k.



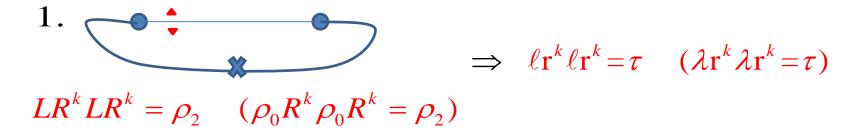
 \mathfrak{M} : Möbius regular embedding of G with valency 2k.

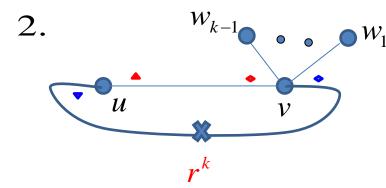




• $w_1 \implies (1) r^k$ fixes all neighbors of u. (2) r^k sends w_i to w_{k-i} . k: odd $\Rightarrow \exists$ no element in $N(v) - \{u\}$ fixed by r^k k: even $\Rightarrow \exists$ one element in $N(v) - \{u\}$ fixed by r^k

 \mathfrak{M} : Möbius regular embedding of G with valency 2k.



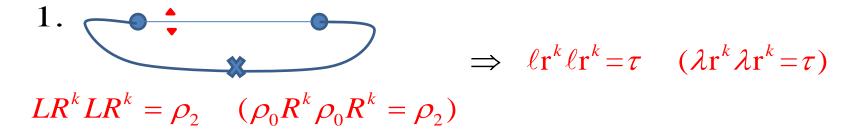


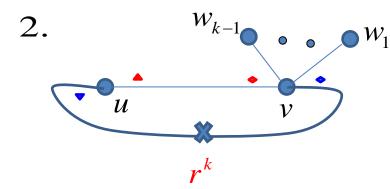
 $\begin{array}{c} \bullet & W_{1} \\ \hline & \Rightarrow \\ v \end{array} \begin{array}{c} (1) \ r^{k} \ \text{fixes all neighbors of u.} \\ (2) \ r^{k} \ \text{sends } W_{i} \ \text{to } W_{k-i}. \\ k: \text{odd} \end{array} \begin{array}{c} \exists \ \text{no element in } N(v) - \{u\} \ \text{fixed by } r^{k} \\ k: \text{even} \end{array} \end{array}$

3. $H=Aut(\mathfrak{M})_u = \langle \mathbf{r}, \tau \rangle \simeq \mathbf{D}_{2k}$. $J=Aut(\mathfrak{M})_{\{u,v\}} = \langle \mathbf{r}^k, \tau, \lambda \rangle = \langle \mathbf{r}^k, \ell \rangle \simeq \mathbf{D}_4$. $H \cap J = \langle \mathbf{r}^k, \tau \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$. $Aut(\mathfrak{M}) = \langle H, J \rangle$.

H and J do not have identical centers.

 \mathfrak{M} : Möbius regular embedding of G with valency 2k.





• • • $W_1 \implies (1) r^k$ fixes all neighbors of u. (2) r^k sends W_i to W_{k-i} . $k: \text{odd} \implies \exists \text{ no element in } N(v) - \{u\} \text{ fixed by } r^k$ $k: \text{even} \implies \exists \text{ one element in } N(v) - \{u\} \text{ fixed by } r^k$

3. $H=Aut(\mathfrak{M})_u = \langle \mathbf{r}, \tau \rangle \simeq \mathbf{D}_{2k}$. $J=Aut(\mathfrak{M})_{\{u,v\}} = \langle \mathbf{r}^k, \tau, \lambda \rangle = \langle \mathbf{r}^k, \ell \rangle \simeq \mathbf{D}_4$. $H \cap J = \langle \mathbf{r}^k, \tau \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$. $Aut(\mathfrak{M}) = \langle H, J \rangle$.

H and J do not have identical centers.

4. \mathfrak{M} is self-Petrie dual.

 \exists a Möbius regular emb. of $C_n \Leftrightarrow 3 \mid n$.

 \exists a Möbius regular emb. of $C_n \Leftrightarrow 3 \mid n$.

1.

 $\Rightarrow \exists$ no Möbius regular embedding of G

(1) For $K_n, K_{n,\dots,n}, H(d, n)$ with $n \ge 3$

 \Rightarrow \exists no Möbius regular embedding.

(2) \exists no Möbius regular map of covalency 3.

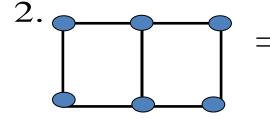
 \exists a Möbius regular emb. of $C_n \Leftrightarrow 3 \mid n$.

 $\Rightarrow \exists$ no Möbius regular embedding of G

(1) For $K_n, K_{n,\dots,n}, H(d, n)$ with $n \ge 3$

 \Rightarrow \exists no Möbius regular embedding.

(2) \exists no Möbius regular map of covalency 3.



1.

 $\Rightarrow \exists no M\"obius regular embedding of G$ For Q_n with $n \ge 2$

 $\forall u, v \in V(G), |N(u) \cap N(v)| \le 2$

 \Rightarrow \exists no Möbius regular embedding.

 \exists a Möbius regular emb. of $C_n \Leftrightarrow 3 \mid n$.

 $\Rightarrow \exists$ no Möbius regular embedding of G

(1) For $K_n, K_{n,\dots,n}, H(d, n)$ with $n \ge 3$

 \Rightarrow \exists no Möbius regular embedding.

(2) \exists no Möbius regular map of covalency 3.

 $\Rightarrow \exists no M\"obius regular embedding of G$ For Q_n with $n \ge 2$

 $\forall u, v \in V(G), |N(u) \cap N(v)| \le 2$

1.

2.

 \Rightarrow \exists no Möbius regular embedding.

3. k: even, k |V(G)| is not a multiple of 3

 $\Rightarrow \exists$ no Möbius regular embedding of G

: Each orbit of $\langle \mathbb{R}^k, L, \tau \rangle$ has the same size and corresponds to Möbius regular embedding of a cycle $\Rightarrow 3 \mid k \mid V(G) \mid$

Mobius regular embeddings of Kn,n

 (λ, ρ, τ) : an admissible triple for $K_{n,n}^{(2)}$ whose corresponding regular maps is Möbius regular.

- (λ, ρ, τ) : an admissible triple for $K_{n,n}^{(2)}$ whose corresponding regular maps is Möbius regular.
 - \Rightarrow There exists $\phi \in \operatorname{Aut}(K_{n,n})$ such that

 $\mathbf{r}^{\phi} = \rho^{\phi} \tau^{\phi} = r_{\alpha} = \alpha(0', 1', \dots, n-1')$ $\ell^{\phi} = \lambda^{\phi} \tau^{\phi} = \ell_{1} = (0, 0')(1, 1') \cdots (n-1, n-1')$ $\tau^{\phi} = \tau_{1} = (0)(1, n-1) \cdots (0')(1', n-1') \cdots .$

- (λ, ρ, τ) : an admissible triple for $K_{n,n}^{(2)}$ whose corresponding regular maps is Möbius regular.
 - \Rightarrow There exists $\phi \in \operatorname{Aut}(K_{n,n})$ such that

 $r^{\phi} = \rho^{\phi} \tau^{\phi} = r_{\alpha} = \alpha(0', 1', \dots, n-1')$ $\ell^{\phi} = \lambda^{\phi} \tau^{\phi} = \ell_{1} = (0, 0')(1, 1') \cdots (n-1, n-1')$ $\tau^{\phi} = \tau_{1} = (0)(1, n-1) \cdots (0')(1', n-1') \cdots .$ $(r_{\alpha} \tau_{1})^{2} = id \implies \alpha^{-1}(-k) = -\alpha(k).$

 (λ, ρ, τ) : an admissible triple for $K_{n,n}^{(2)}$ whose corresponding regular maps is Möbius regular.

 \Rightarrow There exists $\phi \in \operatorname{Aut}(K_{n,n})$ such that

$$\begin{aligned} \mathbf{r}^{\phi} &= \rho^{\phi} \tau^{\phi} = r_{\alpha} = \alpha(0', 1', \dots, n-1') \\ \ell^{\phi} &= \lambda^{\phi} \tau^{\phi} = \ell_{1} = (0, 0')(1, 1') \cdots (n-1, n-1') \\ \tau^{\phi} &= \tau_{1} = (0)(1, n-1) \cdots (0')(1', n-1') \cdots . \\ (r_{\alpha} \tau_{1})^{2} &= id \implies \alpha^{-1}(-k) = -\alpha(k). \\ &= \alpha^{n} = (0)(1, n-1)(2, n-2) \cdots, \quad \alpha^{-1}(-k) = -\alpha(k) \implies \end{aligned}$$

 $\alpha = (0)(1, n-1)(2, n-2)\cdots$ and *n* is odd

 r_{α}^{n}

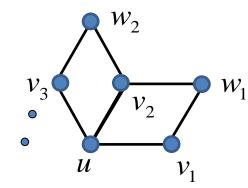
 (λ, ρ, τ) : an admissible triple for $K_{n,n}^{(2)}$ whose corresponding regular maps is Möbius regular.

 \Rightarrow There exists $\phi \in \operatorname{Aut}(K_{n,n})$ such that

 $r^{\phi} = \rho^{\phi} \tau^{\phi} = r_{\alpha} = \alpha(0', 1', ..., n - 1')$ $\ell^{\phi} = \lambda^{\phi} \tau^{\phi} = \ell_{1} = (0, 0')(1, 1') \cdots (n - 1, n - 1')$ $\tau^{\phi} = \tau_{1} = (0)(1, n - 1) \cdots (0')(1', n - 1') \cdots .$ $(r_{\alpha} \tau_{1})^{2} = id \implies \alpha^{-1}(-k) = -\alpha(k).$ $r_{\alpha}^{n} = \alpha^{n} = (0)(1, n - 1)(2, n - 2) \cdots, \quad \alpha^{-1}(-k) = -\alpha(k) \implies$

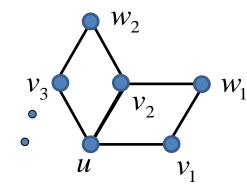
 $\alpha = (0)(1, n-1)(2, n-2)\cdots$ and *n* is odd

⇒ For odd n, ∃ only one Möbius regular embedding of $K_{n,n}$. For even n, ∃ no Möbius regular embedding of $K_{n,n}$. For odd n, the order of $r_{\alpha} \ell_1$ is 4 ⇒ covalency is 4.



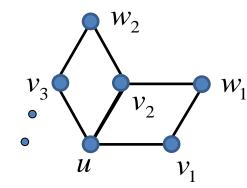
$$w_1 = w_2 \implies w_1 = w_2 = w_3 = \cdots \implies r^k \text{ fixes } w_1 = w_2 = w_3 = \cdots$$

 $\Rightarrow \text{ contradiction}$



$$w_1 = w_2 \implies w_1 = w_2 = w_3 = \cdots \implies r^k$$
 fixes $w_1 = w_2 = w_3 = \cdots$.
 \Rightarrow contradiction

 $w_1 \neq w_2 \implies \text{both } r \text{ and } r^k \text{ send } w_i \text{ to } w_{i+1}$

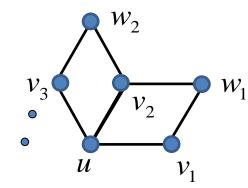


$$w_{1} = w_{2} \implies w_{1} = w_{2} = w_{3} = \cdots \implies r^{k} \text{ fixes } w_{1} = w_{2} = w_{3} = \cdots$$

$$\Rightarrow \text{ contradiction}$$

$$w_{1} \neq w_{2} \implies \text{ both } r \text{ and } r^{k} \text{ send } w_{i} \text{ to } w_{i+1}$$

$$\Rightarrow w_{1} = w_{3} = \cdots, \quad w_{2} = w_{4} = \cdots \implies k \text{:odd}$$



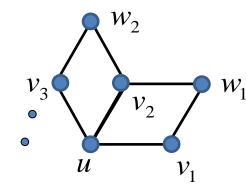
$$w_{1} = w_{2} \implies w_{1} = w_{2} = w_{3} = \cdots \implies r^{k} \text{ fixes } w_{1} = w_{2} = w_{3} = \cdots$$

$$\Rightarrow \text{ contradiction}$$

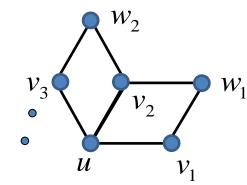
$$w_{1} \neq w_{2} \implies \text{ both } r \text{ and } r^{k} \text{ send } w_{i} \text{ to } w_{i+1}$$

$$\Rightarrow w_{1} = w_{3} = \cdots, \quad w_{2} = w_{4} = \cdots \implies k \text{:odd}$$

$$\Rightarrow N(u) = N(w_{1}) = N(w_{2}) = \{v_{1}, \dots, v_{k}\}$$



 $w_{1} = w_{2} \implies w_{1} = w_{2} = w_{3} = \cdots \implies r^{k} \text{ fixes } w_{1} = w_{2} = w_{3} = \cdots$ $\Rightarrow \text{ contradiction}$ $w_{1} \neq w_{2} \implies \text{ both } r \text{ and } r^{k} \text{ send } w_{i} \text{ to } w_{i+1}$ $\Rightarrow w_{1} = w_{3} = \cdots, \quad w_{2} = w_{4} = \cdots \implies k \text{:odd}$ $\Rightarrow N(u) = N(w_{1}) = N(w_{2}) = \{v_{1}, \dots, v_{k}\}$ $\Rightarrow N(v_{1}) = \cdots = N(v_{k}) \implies G = K_{k,k}$



$$w_{1} = w_{2} \implies w_{1} = w_{2} = w_{3} = \cdots \implies r^{k} \text{ fixes } w_{1} = w_{2} = w_{3} = \cdots$$

$$\Rightarrow \text{ contradiction}$$

$$w_{1} \neq w_{2} \implies \text{ both } r \text{ and } r^{k} \text{ send } w_{i} \text{ to } w_{i+1}$$

$$\Rightarrow w_{1} = w_{3} = \cdots, \quad w_{2} = w_{4} = \cdots \implies k \text{:odd}$$

$$\Rightarrow N(u) = N(w_{1}) = N(w_{2}) = \{v_{1}, \dots, v_{k}\}$$

$$\Rightarrow N(v_{1}) = \cdots = N(v_{k}) \implies G = K_{k,k}$$

⇒ For odd k(even k, resp), \exists only one (no, resp) Möbius regular map whose valency and covalency are 2k and 4, respectively.

 $k, t \in \mathbb{N}, (k, t \ge 2)$, let

 $T^{M}(2,t,2k) = \langle a,b,c | a^{2} = b^{2} = c^{2} = (ac)^{2} = (bc)^{2k} = (ab)^{t} = 1, \ a(bc)^{k} a(bc)^{k} = c \rangle$ called Möbius triangle group of type (t,2k). $k, t \in \mathbb{N}, (k, t \ge 2)$, let

 $T^{M}(2,t,2k) = \langle a,b,c | a^{2} = b^{2} = c^{2} = (ac)^{2} = (bc)^{2k} = (ab)^{t} = 1, \ a(bc)^{k} a(bc)^{k} = c \rangle$ called Möbius triangle group of type (t,2k).

For t = 3, $k \ge 3$, $T^{M}(2, t, 2k)$ is not a smooth represented group. For k : even, t = 4, $T^{M}(2, t, 2k)$ is not a smooth represented group. For k : odd, t = 4, $T^{M}(2, t, 2k)$ is a smooth represented finite group and all other relations are redundant. (property A) $k, t \in \mathbb{N}, (k, t \ge 2)$, let

 $T^{M}(2,t,2k) = \langle a,b,c | a^{2} = b^{2} = c^{2} = (ac)^{2} = (bc)^{2k} = (ab)^{t} = 1, \ a(bc)^{k} a(bc)^{k} = c \rangle$ called Möbius triangle group of type (t,2k).

For t = 3, $k \ge 3$, $T^{M}(2, t, 2k)$ is not a faithfully defined group. For k : even, t = 4, $T^{M}(2, t, 2k)$ is not a faithfully defined group. For k : odd, t = 4, $T^{M}(2, t, 2k)$ is a faithfully defined finite group and all other relations are redundant. (property A) Problem: 1. Classify k, t such that $T^{M}(2, t, 2k)$ is a smooth represented group.

2. Classify k, t such that $T^{M}(2, t, 2k)$ satisfy the property A.

3. Classify k, t such that $T^{M}(2, t, 2k)$ is a smooth represented infinite group and check residual finiteness of it.

- $k=2 \implies$ smooth represented only for t=3t'.
- $t=3 \implies$ smooth represented only for k=2.
- $t=4 \implies$ smooth represented only for odd k. a finite group.

(t,k)=(5,3),(5,4): not smooth represented.

(t,k)=(5,5),(5,6),(7,3): smooth represented finite.

(t,k)=(5,10),(6,5),(6,6),...:smooth represented infinite.

