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Classification of edge transitive maps (ET)

Problem
Classify edge-transitive maps of genus g > 1 up to isomorphism
classes.

Graver & Watkins (1997) recognised 14 families of edge-transitive
maps (ET), both orientable and non-orientable,
Širáň, Watkins & Tucker (2001) proved that the families are
pairwise different,
Orbanić, Pisanski, Pellicer & Tucker (2011) described all these
families in terms of quotient maps and voltage assignments on
possibly non-orientable surfaces with non-empty boundary. Their
classification of ET’s ranges for χ ≥ −2.
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Širáň, Watkins & Tucker (2001) proved that the families are
pairwise different,
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Please, I need ET with Aut+ M ∼= A6

Such ET’s (on an orientable surface) can be constructed

Search for suitable normal subgroups of indices 720 = 24.32.5,
1440 = 25.32.5, or 2880 = 26.32.5 in

M = 〈a, b, c | c2 = (ab)2 = (bc)2 = (ac)2 = 1〉;

Check whether the quotient group contains an image of even-word
subgroup ofM isomorphic to A6;
Reconstruct derived maps.

How easy. . .
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Please, I need ET with Aut+ M ∼= A6

There are 11 maps with Aut+ M = A6 on orientable surface of genus
10, such that:

S10 is the surface with minimum genus admitting such
edge-transitive maps;

2 of them are regular maps (see M. Conder’s list), one is the dual
of the other, both are reflexible and polyhedral;
3 of them are regular hypermaps (see other M. Conder’s list), all
are reflexible, two are polytopal, one is polyhedral;
the remaining 6 maps Aut+ M has two orbits on edges, three of
them are polytopal, three of them are not simple, all are reflexible.
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What is behind

regular branched coverings;
Riemann uniformization;
Koebe Theorem.

(S̃,U)

U

��

K

$$
(Sg,G)

Gzz
(Oσ, 1)

S̃ is the universal cover of both Sg and O(σ);

U acts properly discontinuously on S̃, U ↪→ Aut S̃, U ∼= π1(Oσ);
groups U and K are Fuchsian groups;
K En U, Sg = S̃/K, G = U/K, G < AutS has discrete action on S;
action of G on S is not fixed-point-free, Oσ is an orbifold;
σ = (γ; {m1,m2, . . . ,mr}) is the signature of the orbifold Oσ.
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What is behind

p : Sg → Oσ is a branched covering, σ follows from
Riemann-Hurwitz equation

2− 2g = |G|

(
2− 2γ −

r∑
i=1

(
1− 1

mi

))
, ∀i : mi ≥ 2, mi | |G|;

U ∼= π1(Oσ) is a Fuchsian group with signature σ and the
presentation

〈x1, . . . , xr, a1, b1, . . . , aγ , bγ | xm1
1 = . . . = xmr

r = 1,
γ∏

i=1

[ai, bi]

r∏
j=1

xj = 1〉;

Oσ = S̃/U is homeomorphic to compact, closed surface of genus γ
with distinguished r points, i-th point is endowed with branch index
mi;
G = U/K is finite group acting discretely on Sg, K E U is of finite
index and torsion-free.
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Branched coverings of maps

Map M (no semi-edges) is of genus g , Aut+ M = G has discrete
action on Sg;

r : M→M/G ≡ p : Sg → Sg/G;
M̄ = M/G is the map on orbifold;
r is regular covering transformation;
M can be reconstructed as a derived map with
CT(r) = G = Aut+ M;
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Maps on orbifolds

Let M be a map on orbifold. Then

M may have semi-edges, free end of each one is the branch point
of index 2,

any vertex of M might be a branch point,
the centre of any face of M might be a branch point
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Isomorphisms

Let M and N be maps on orbifolds. The mapping ϕ : M→ N is
isomorphism of maps on orbifolds if

M and N sits on the same orbifold;

ϕ : M→ N is map isomorphism (preserves V, E, F);
ϕ maps branch points to branch points;
ϕ preserves branch indices.
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Quotients of edge transitive maps

M̄ = M/Aut+ M is sitting on an orbifold;
M̄ has at most two edges;
if M̄ has two edges, then a reflection of M̄ transposes them.
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How derive maps upstairs

T-reduced voltage assignment on M̄ is ξ : V ∪D→ G such that
1 all darts D+(T) on the rooted spanning tree (T, x0) receive trivial

voltages,
2 ξxL = ξ−1

x for all x ∈ D,
3 G = 〈{ξx : x ∈ D ∪ V}〉.

Derived map M = M̄ξ = (Dξ,Rξ,Lξ), Dξ = D×G is given by

(x, g)Rξ =

 (xR, g · ξv), x ∈ D+(T),

(xR, g), otherwise

(x, g)Lξ = (xL, g · ξx)
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Maps with voltages
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Computation
given g > 1 take all (numerical) solutions of RH equation – tuples |G|, σ;
search for normal subgroups of index d.|G|;
check whether |G| = |Aut+ M|.

E1 〈x1, x2 | xk
1 = x2

2 = (x−1
1 x2)

m = 1〉 d = 1

E2 〈y1, y2, y3, r | yk
1 = y2

2 = y2
3 = (y−1

1 y2y3)
m = 1, d = 2

r2 = 1, yr
1 = y−1

1 , yr
2 = y3, yr

3 = y2〉
E3 〈x1, x2 | xk

1 = xl
2 = (x−1

2 x−1
1 )m = 1〉 d = 1

E4 〈y1, y2, y3, r | yk
1 = yl

2 = ym
3 = (y−1

1 y−1
2 y−1

3 )n = 1, 〉 d = 2
r2 = 1, yr

1 = y−1
2 , yr

2 = y−1
1 , yr

3 = y−1
3 〉

E5a 〈y1, y2, y3, r | yk
1 = yl

2 = (y3y−1
2 )m = (y−1

3 y−1
1 )n = 1, 〉 d = 2

r2 = 1, yr
1 = y−1

1 , yr
2 = y−1

2 , yr
3 = (y2y3y−1

2 )−1〉
E5b 〈y1, y2, y3, r | yk

1 = yl
2 = (y3y−1

2 )m = (y−1
3 y−1

1 )n = 1, 〉 d = 2
r2 = 1, yr

1 = y−1
2 , yr

2 = y−1
1 , yr

3 = (y1y−1
3 y−1

1 )−1〉
E6a 〈z, a, b, s | zk = (z−1ab−1a−1b)m = 1, d = 2

s2 = 1, zs = z−1, as = b−1, bs = a−1〉
E6b 〈z, a, b, s | zk = (z−1ab−1a−1b)m = 1, d = 2

s2 = 1, zs = z−1, as = b, bs = a〉
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Results

g Family / Subfamily Maps
E1 E2 E3 E4 E5a E5b E6a E6b

2 10 1 18 2 44 0 1 0 76
3 20 2 46 6 108 0 1 1 184
4 20 7 53 13 137 0 6 2 238
5 26 11 54 20 177 0 5 4 297
6 23 9 70 16 221 2 7 4 352
7 27 19 80 38 317 0 10 8 499
8 24 9 68 18 237 3 8 6 373
9 52 39 141 77 567 0 26 16 918

10 54 26 158 56 544 0 27 16 881

maps of different families cannot be isomorphic;

dual maps were not computed here
see
http://www.savbb.sk/~karabas/science.html#etran;
all maps as (D; R,L), we can derive those with (D; RL,L);
construction of non-orientable maps needs more effort.
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