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Classification of edge transitive maps (ET)

Problem

Classify edge-transitive maps of genus g > 1 up to isomorphism
classes.
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Classification of edge transitive maps (ET)

Classify edge-transitive maps of genus g > 1 up to isomorphism
classes.

m Graver & Watkins (1997) recognised 14 families of edge-transitive
maps (ET), both orientable and non-orientable,

m Siran, Watkins & Tucker (2001) proved that the families are
pairwise different,

m Orbani¢, Pisanski, Pellicer & Tucker (2011) described all these
families in terms of quotient maps and voltage assignments on
possibly non-orientable surfaces with non-empty boundary. Their
classification of ET’s ranges for y > —2.
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Please, | need ET with Aut™ M = A,

Such ET’s (on an orientable surface) can be constructed

m Search for suitable normal subgroups of indices 720 = 2%.32.5,
1440 = 25.32.5, or 2880 = 2°.32.5 in

M = {(a,b,c|c* = (ab)* = (bc)* = (ac)* = 1);
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Please, | need ET with Aut™ M = A,

Such ET’s (on an orientable surface) can be constructed

m Search for suitable normal subgroups of indices 720 = 2%.32.5,
1440 = 25.32.5, or 2880 = 2°.32.5 in

M = {(a,b,c|c* = (ab)* = (bc)* = (ac)* = 1);

m Check whether the quotient group contains an image of even-word
subgroup of M isomorphic to Ag;

m Reconstruct derived maps.

How easy...
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Please, | need ET with Aut™ M = A,

There are 11 maps with Autt M = A on orientable surface of genus
10, such that:

m Sy is the surface with minimum genus admitting such
edge-transitive maps;
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Please, | need ET with Aut™ M = A,

There are 11 maps with Autt M = A on orientable surface of genus
10, such that:

B Sy is the surface with minimum genus admitting such
edge-transitive maps;

m 2 of them are regular maps (see M. Conder’s list), one is the dual
of the other, both are reflexible and polyhedral;

m 3 of them are regular hypermaps (see other M. Conder’s list), all
are reflexible, two are polytopal, one is polyhedral;

m the remaining 6 maps Aut*™ M has two orbits on edges, three of

them are polytopal, three of them are not simple, all are reflexible.
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What is behind

(S,0)

K
m regular branched coverings; \

m Riemann uniformization;

m Koebe Theorem. /
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What is behind

(S,0)

K
m regular branched coverings; \

m Riemann uniformization;

m Koebe Theorem. /

(0., 1)

m S is the universal cover of both Sy and O(o);

m U acts properly discontinuously on S, U < AutS, U = m1(O,);

m groups U and K are Fuchsian groups;

mKIU S = S/K, G = U/K, G < AutS has discrete action on S;
m action of G on S is not fixed-point-free, O, is an orbifold;

B o = (v;{m,my,...,m}) is the signature of the orbifold O,.
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What is behind

m p: S, — O, is a branched covering, o follows from
Riemann-Hurwitz equation

.
2-2¢=IG] (2—27—2(1—”11,)),%: mi > 2, mi | |Gl;

i=1
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What is behind

m p: S, — O, is a branched covering, o follows from
Riemann-Hurwitz equation

r
2-2g=[G| (2—27—Z<1—;)),Vi1 mi 2 2, m; | |Gl;
i=1 !

m U2 m(0,) is a Fuchsian group with signature o and the
presentation

vy r
m m
(X1, .., X, a0, b1, a0y | X = =2 = 1,H[ai,bi]ij =1);
i=1 j=1
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What is behind

m p: S, — O, is a branched covering, o follows from
Riemann-Hurwitz equation

r

2-2¢ =G| (2—27—2(1—7}1)),%1 mi 2 2, m; | |Gl;

i=1
m U2 m(0,) is a Fuchsian group with signature o and the
presentation

vy r
m m
(X1, .., X, a0, b1, a0y | X = =2 = 1,H[ai,bi]ij =1);
i=1 j=1

m O, = §/U is homeomorphic to compact, closed surface of genus ~
with distinguished r points, i-th point is endowed with branch index
mi,
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What is behind

m p: S, — O, is a branched covering, o follows from
Riemann-Hurwitz equation

y
2-2¢ =G| (2—27—2(1—7}1)),%1 mi 2 2, m; | |Gl;

i=1

m U2 m(0,) is a Fuchsian group with signature o and the
presentation

vy r
m m
(X1, .., X, a0, b1, a0y | X = =2 = 1,H[ai,bi]ij =1);
i=1 j=1

m O, = §/U is homeomorphic to compact, closed surface of genus ~
with distinguished r points, i-th point is endowed with branch index
mi,

m G = U/K s finite group acting discretely on S;, K < U is of finite
index and torsion-free.
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Branched coverings of maps

m Map M (no semi-edges) is of genus ¢, Aut™ M = G has discrete
action on Sg;
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Branched coverings of maps

m Map M (no semi-edges) is of genus ¢, Aut™ M = G has discrete
action on Sg;

mr-M->M/G=p: S — S/G;
m M = M/G is the map on orbifold;
m 7 is regular covering transformation;

m M can be reconstructed as a derived map with
CT(r) = G = Autt M;
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Maps on orbifolds

Let M be a map on orbifold. Then

m M may have semi-edges, free end of each one is the branch point
of index 2,
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Maps on orbifolds

Let M be a map on orbifold. Then

m M may have semi-edges, free end of each one is the branch point
of index 2,

m any vertex of M might be a branch point,
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Maps on orbifolds

Let M be a map on orbifold. Then

m M may have semi-edges, free end of each one is the branch point
of index 2,

m any vertex of M might be a branch point,
m the centre of any face of M might be a branch point
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Isomorphisms

Let M and N be maps on orbifolds. The mapping ¢: M — N is
isomorphism of maps on orbifolds if

m M and N sits on the same orbifold;
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Isomorphisms

Let M and N be maps on orbifolds. The mapping ¢: M — N is
isomorphism of maps on orbifolds if

m M and N sits on the same orbifold;
® p: M — N is map isomorphism (preserves V, E, F);
B p maps branch points to branch points;

Edge-transitive maps. .. (J. Karabas$ and R. Nedela, UMB)

/14



Isomorphisms

Let M and N be maps on orbifolds. The mapping ¢: M — N is
isomorphism of maps on orbifolds if

m M and N sits on the same orbifold;

® p: M — N is map isomorphism (preserves V, E, F);
B p maps branch points to branch points;

m ¢ preserves branch indices.
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Quotients of edge transitive maps

m M = M/ Aut™ M is sitting on an orbifold;
m M has at most two edges;

m if M has two edges, then a reflection of M transposes them.
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Quotients of edge transitive maps

m M = M/ Aut™ M is sitting on an orbifold;

m M has at most two edges;

m if M has two edges, then a reflection of M transposes them.
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How derive maps upstairs

m T-reduced voltage assignmenton M is ¢ : VU D — G such that
all darts D™ (T) on the rooted spanning tree (T, xo) receive trivial
voltages,
& =& forallx e D,
G={&:xeDUV}).
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How derive maps upstairs

m T-reduced voltage assignmenton M is ¢ : VU D — G such that

all darts D™ (T) on the rooted spanning tree (T, xo) receive trivial
voltages,

& =& forallx e D,

G={&:xe DUV},

m Derived map M = M¢ = (D¢, R¢,LS), D¢ = D x G is given by
(xR7g'§U)7 x€D+(T),
(xvg)R5 =

(xR, 9), otherwise
(x,g)L5 = (XL,g ’ gx)
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Maps with voltages
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:
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Computation

m given g > 1 take all (numerical) solutions of RH equation — tuples |G|, o
m search for normal subgroups of index 4.|G|;
m check whether |G| = | Aut™ M.

E1 | (x,20 | ¥ =x=("0)"=1) d=1
E2 | vyt Vi ===y 'vays)" =1, d=2
=1y =y Ly =Yy = b2)

E3 (1,20 | = = (x2 Ly =1) d=1
E4 | (yi,p2,57 | y1 =y = (yflyz‘ly;l) =1,) d=2

P=lyi=y =y =y
E5a | (yi,vy2, 5.7 | i =vo = (y3y5 ) = (y5 1yfl) =1,) d=2
=1 y1 iy =1y = (eysys DY)
ESb | (y1,2, 3,7 | yk =y )" =5y ) =1,) d=2
r= 1 =y =y = sy DT
E6a | (z,a,b,s |2 = (z" lab~'a~1b)" =1, d=2
f=1,7=z1 a=b1F=a"
E6b | (z,a,b,5 | 2" = (z"lab~ a7 b)" =1, d=2
$f=12=z"a=bb =a)
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Results

Family / Subfamily

8 'ETTE2 [ E3 | E4 | E5a | E5b | E6a | E6b | MaPs
2110|118 | 2 | 4 | 0 | 1 | 0 | 76
3120 2|46 |6 108 0 | 1 1 | 184
4 20| 7 |53 |13/137| 0o | 6 | 2 | 238
52|11 |54 |20]177| 0o | 5 | 4 | 297
6 |23 9|70 |16]221| 2 | 7 | 4 | 352
7 |27 /19| 80 | 38317 0o | 10 | 8 | 499
8 |24| 9 |68 |18|237| 3 | 8 | 6 | 373
9 | 52|39 |141 |77 567 | 0 | 26 | 16 | 918
10 | 54 | 26 | 158 | 56 | 544 | 0 | 27 | 16 | 881

m maps of different families cannot be isomorphic;

Edge-transitive maps. .. (J. Karaba$ and R. Nedela, UMB)

14/14


http://www.savbb.sk/~karabas/science.html#etran

Results

Family / Subfamily Maps
8 'ET[E2| E3 [E4 | EBa | E5b | E6a | E6b | 2P
510 1 |18 | 2 | 44| 0 | 1 | 0 | 76
320|246 |6 |108] 0 | 1 1 | 184
4 20| 7 |53 |13][137| 0o | 6 | 2 | 238
5 26|11 |54 | 20177 | o | 5 | 4 | 297
6 | 23| 9 |70 |16|221| 2 | 7 | 4 | 3852
7 |27 /19| 80 |38 |317| o | 10 | 8 | 499
8 |24| 9|68 |18[237| 3 | 8 | 6 | 373
9 | 52|39 141 |77 |567| 0 | 26 | 16 | 918
10 | 54 | 26 | 158 | 56 | 544 | 0 | 27 | 16 | 881

m maps of different families cannot be isomorphic;
m dual maps were not computed here
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B see
http://www.savbb.sk/~karabas/science.htmlfetran;

m all maps as (D; R, L), we can derive those with (D; RL,L);
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Results

Family / Subfamily Maps

8 'ET[E2| E3 [E4 | EBa | E5b | E6a | E6b | 2P
510 1 |18 | 2 | 44| 0 | 1 | 0 | 76

320|246 |6 |108] 0 | 1 1 | 184
4 20| 7 |53 |13][137| 0o | 6 | 2 | 238
5 26|11 |54 | 20177 | o | 5 | 4 | 297
6 | 23| 9 |70 |16|221| 2 | 7 | 4 | 3852
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8 |24| 9|68 |18[237| 3 | 8 | 6 | 373
9 | 52|39 141 |77 |567| 0 | 26 | 16 | 918
10 | 54 | 26 | 158 | 56 | 544 | 0 | 27 | 16 | 881

m maps of different families cannot be isomorphic;

m dual maps were not computed here

B see
http://www.savbb.sk/~karabas/science.htmlfetran;

m all maps as (D; R, L), we can derive those with (D; RL,L);

m construction of non-orientable maps needs more effort.
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