Edge-transitive maps and discrete group actions

Ján Karabáš and Roman Nedela

Matej Bel University, Banská Bystrica

SIGMAP 2014, West Malvern, 8. 7. 2014

Classification of edge transitive maps (ET)

Problem
 Classify edge-transitive maps of genus $g>1$ up to isomorphism classes.

Classification of edge transitive maps (ET)

Problem

Classify edge-transitive maps of genus $g>1$ up to isomorphism classes.

■ Graver \& Watkins (1997) recognised 14 families of edge-transitive maps (ET), both orientable and non-orientable,

Classification of edge transitive maps (ET)

Problem

Classify edge-transitive maps of genus $g>1$ up to isomorphism classes.

■ Graver \& Watkins (1997) recognised 14 families of edge-transitive maps (ET), both orientable and non-orientable,
■ Širáň, Watkins \& Tucker (2001) proved that the families are pairwise different,

Classification of edge transitive maps (ET)

Problem

Classify edge-transitive maps of genus $g>1$ up to isomorphism classes.

■ Graver \& Watkins (1997) recognised 14 families of edge-transitive maps (ET), both orientable and non-orientable,
■ Širáň, Watkins \& Tucker (2001) proved that the families are pairwise different,
■ Orbanić, Pisanski, Pellicer \& Tucker (2011) described all these families in terms of quotient maps and voltage assignments on possibly non-orientable surfaces with non-empty boundary. Their classification of ET's ranges for $\chi \geq-2$.

Please, I need ET with $\mathrm{Aut}^{+} \mathbf{M} \cong A_{6}$

Such ET's (on an orientable surface) can be constructed
■ Search for suitable normal subgroups of indices $720=2^{4} .3^{2} .5$, $1440=2^{5} .3^{2} .5$, or $2880=2^{6} .3^{2} .5$ in

$$
\mathcal{M}=\left\langle a, b, c \mid c^{2}=(a b)^{2}=(b c)^{2}=(a c)^{2}=1\right\rangle ;
$$

Please, I need ET with $\mathrm{Aut}^{+} \mathbf{M} \cong A_{6}$

Such ET's (on an orientable surface) can be constructed
■ Search for suitable normal subgroups of indices $720=2^{4} .3^{2} .5$, $1440=2^{5} .3^{2} .5$, or $2880=2^{6} .3^{2} .5$ in

$$
\mathcal{M}=\left\langle a, b, c \mid c^{2}=(a b)^{2}=(b c)^{2}=(a c)^{2}=1\right\rangle ;
$$

■ Check whether the quotient group contains an image of even-word subgroup of \mathcal{M} isomorphic to A_{6};

Please, I need ET with $\mathrm{Aut}^{+} \mathbf{M} \cong A_{6}$

Such ET's (on an orientable surface) can be constructed
■ Search for suitable normal subgroups of indices $720=2^{4} .3^{2} .5$, $1440=2^{5} .3^{2} .5$, or $2880=2^{6} .3^{2} .5$ in

$$
\mathcal{M}=\left\langle a, b, c \mid c^{2}=(a b)^{2}=(b c)^{2}=(a c)^{2}=1\right\rangle ;
$$

■ Check whether the quotient group contains an image of even-word subgroup of \mathcal{M} isomorphic to A_{6};

- Reconstruct derived maps.

How easy...

Please, I need ET with $\mathrm{Aut}^{+} \mathbf{M} \cong A_{6}$

There are 11 maps with $\mathrm{Aut}^{+} \mathbf{M}=A_{6}$ on orientable surface of genus 10 , such that:

- \mathcal{S}_{10} is the surface with minimum genus admitting such edge-transitive maps;

Please, I need ET with $\mathrm{Aut}^{+} \mathbf{M} \cong A_{6}$

There are 11 maps with $\mathrm{Aut}^{+} \mathbf{M}=A_{6}$ on orientable surface of genus 10 , such that:

- \mathcal{S}_{10} is the surface with minimum genus admitting such edge-transitive maps;
■ 2 of them are regular maps (see M. Conder's list), one is the dual of the other, both are reflexible and polyhedral;

Please, I need ET with $\mathrm{Aut}^{+} \mathbf{M} \cong A_{6}$

There are 11 maps with $\mathrm{Aut}^{+} \mathbf{M}=A_{6}$ on orientable surface of genus 10 , such that:

- \mathcal{S}_{10} is the surface with minimum genus admitting such edge-transitive maps;
■ 2 of them are regular maps (see M. Conder's list), one is the dual of the other, both are reflexible and polyhedral;
■ 3 of them are regular hypermaps (see other M. Conder's list), all are reflexible, two are polytopal, one is polyhedral;

Please, I need ET with $\mathrm{Aut}^{+} \mathbf{M} \cong A_{6}$

There are 11 maps with $\mathrm{Aut}^{+} \mathbf{M}=A_{6}$ on orientable surface of genus 10 , such that:

- \mathcal{S}_{10} is the surface with minimum genus admitting such edge-transitive maps;
■ 2 of them are regular maps (see M. Conder's list), one is the dual of the other, both are reflexible and polyhedral;
- 3 of them are regular hypermaps (see other M. Conder's list), all are reflexible, two are polytopal, one is polyhedral;
- the remaining 6 maps Aut ${ }^{+} \mathbf{M}$ has two orbits on edges, three of them are polytopal, three of them are not simple, all are reflexible.

What is behind

- regular branched coverings;

■ Riemann uniformization;
■ Koebe Theorem.

What is behind

■ regular branched coverings;

- Riemann uniformization;

■ Koebe Theorem.

■ $\widetilde{\mathcal{S}}$ is the universal cover of both \mathcal{S}_{g} and $\mathcal{O}(\sigma)$;

What is behind

- regular branched coverings;
- Riemann uniformization;

■ Koebe Theorem.

- $\widetilde{\mathcal{S}}$ is the universal cover of both \mathcal{S}_{g} and $\mathcal{O}(\sigma)$;

■ U acts properly discontinuously on $\widetilde{\mathcal{S}}, \mathrm{U} \hookrightarrow$ Aut $\widetilde{\mathcal{S}}, \mathrm{U} \cong \pi_{1}\left(\mathcal{O}_{\sigma}\right)$;

What is behind

- regular branched coverings;
- Riemann uniformization;

■ Koebe Theorem.

- $\widetilde{\mathcal{S}}$ is the universal cover of both \mathcal{S}_{g} and $\mathcal{O}(\sigma)$;

■ U acts properly discontinuously on $\widetilde{\mathcal{S}}, \mathrm{U} \hookrightarrow \operatorname{Aut} \widetilde{\mathcal{S}}, \mathrm{U} \cong \pi_{1}\left(\mathcal{O}_{\sigma}\right)$;

- groups U and K are Fuchsian groups;

What is behind

- regular branched coverings;
- Riemann uniformization;

■ Koebe Theorem.

- $\widetilde{\mathcal{S}}$ is the universal cover of both \mathcal{S}_{g} and $\mathcal{O}(\sigma)$;
$■$ U acts properly discontinuously on $\widetilde{\mathcal{S}}, \mathrm{U} \hookrightarrow \operatorname{Aut} \widetilde{\mathcal{S}}, \mathrm{U} \cong \pi_{1}\left(\mathcal{O}_{\sigma}\right)$;
- groups U and K are Fuchsian groups;

■ $\mathrm{K} \unlhd_{n} \mathrm{U}, \mathcal{S}_{g}=\widetilde{\mathcal{S}} / \mathrm{K}, \mathrm{G}=\mathrm{U} / \mathrm{K}, \mathrm{G}<$ Aut \mathcal{S} has discrete action on \mathcal{S};

What is behind

- regular branched coverings;
- Riemann uniformization;

■ Koebe Theorem.

■ $\widetilde{\mathcal{S}}$ is the universal cover of both \mathcal{S}_{g} and $\mathcal{O}(\sigma)$;
■ U acts properly discontinuously on $\widetilde{\mathcal{S}}, \mathrm{U} \hookrightarrow \operatorname{Aut} \widetilde{\mathcal{S}}, \mathrm{U} \cong \pi_{1}\left(\mathcal{O}_{\sigma}\right)$;

- groups U and K are Fuchsian groups;

■ $\mathrm{K} \unlhd_{n} \mathrm{U}, \mathcal{S}_{g}=\widetilde{\mathcal{S}} / \mathrm{K}, \mathrm{G}=\mathrm{U} / \mathrm{K}, \mathrm{G}<\mathrm{Aut} \mathcal{S}$ has discrete action on \mathcal{S};
\square action of G on \mathcal{S} is not fixed-point-free, \mathcal{O}_{σ} is an orbifold;

What is behind

- regular branched coverings;

■ Riemann uniformization;
■ Koebe Theorem.

■ $\widetilde{\mathcal{S}}$ is the universal cover of both \mathcal{S}_{g} and $\mathcal{O}(\sigma)$;
■ U acts properly discontinuously on $\widetilde{\mathcal{S}}, \mathrm{U} \hookrightarrow$ Aut $\widetilde{\mathcal{S}}, \mathrm{U} \cong \pi_{1}\left(\mathcal{O}_{\sigma}\right)$;

- groups U and K are Fuchsian groups;
$\square \mathrm{K} \unlhd_{n} \mathrm{U}, \mathcal{S}_{g}=\widetilde{\mathcal{S}} / \mathrm{K}, \mathrm{G}=\mathrm{U} / \mathrm{K}, \mathrm{G}<\mathrm{Aut} \mathcal{S}$ has discrete action on \mathcal{S};
\square action of G on \mathcal{S} is not fixed-point-free, \mathcal{O}_{σ} is an orbifold;
- $\sigma=\left(\gamma ;\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}\right)$ is the signature of the orbifold \mathcal{O}_{σ}.

What is behind

■ $p: \mathcal{S}_{g} \rightarrow \mathcal{O}_{\sigma}$ is a branched covering, σ follows from Riemann-Hurwitz equation

$$
2-2 g=|\mathrm{G}|\left(2-2 \gamma-\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right), \forall i: m_{i} \geq 2, m_{i}| | \mathrm{G} \mid ;
$$

What is behind

- $p: \mathcal{S}_{g} \rightarrow \mathcal{O}_{\sigma}$ is a branched covering, σ follows from Riemann-Hurwitz equation

$$
2-2 g=|\mathrm{G}|\left(2-2 \gamma-\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right), \forall i: m_{i} \geq 2, m_{i}| | \mathrm{G} \mid ;
$$

■ $\mathrm{U} \cong \pi_{1}\left(\mathcal{O}_{\sigma}\right)$ is a Fuchsian group with signature σ and the presentation

$$
\left\langle x_{1}, \ldots, x_{r}, a_{1}, b_{1}, \ldots, a_{\gamma}, b_{\gamma} \mid x_{1}^{m_{1}}=\ldots=x_{r}^{m_{r}}=1, \prod_{i=1}^{\gamma}\left[a_{i}, b_{i}\right] \prod_{j=1}^{r} x_{j}=1\right\rangle
$$

What is behind

- $p: \mathcal{S}_{g} \rightarrow \mathcal{O}_{\sigma}$ is a branched covering, σ follows from Riemann-Hurwitz equation

$$
2-2 g=|\mathrm{G}|\left(2-2 \gamma-\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right), \forall i: m_{i} \geq 2, m_{i}| | \mathrm{G} \mid ;
$$

■ $\mathrm{U} \cong \pi_{1}\left(\mathcal{O}_{\sigma}\right)$ is a Fuchsian group with signature σ and the presentation

$$
\left\langle x_{1}, \ldots, x_{r}, a_{1}, b_{1}, \ldots, a_{\gamma}, b_{\gamma} \mid x_{1}^{m_{1}}=\ldots=x_{r}^{m_{r}}=1, \prod_{i=1}^{\gamma}\left[a_{i}, b_{i}\right] \prod_{j=1}^{r} x_{j}=1\right\rangle
$$

- $\mathcal{O}_{\sigma}=\widetilde{\mathcal{S}} / \mathrm{U}$ is homeomorphic to compact, closed surface of genus γ with distinguished r points, i-th point is endowed with branch index m_{i};

What is behind

- $p: \mathcal{S}_{g} \rightarrow \mathcal{O}_{\sigma}$ is a branched covering, σ follows from Riemann-Hurwitz equation

$$
2-2 g=|\mathrm{G}|\left(2-2 \gamma-\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right), \forall i: m_{i} \geq 2, m_{i}| | \mathrm{G} \mid ;
$$

■ $\mathrm{U} \cong \pi_{1}\left(\mathcal{O}_{\sigma}\right)$ is a Fuchsian group with signature σ and the presentation

$$
\left\langle x_{1}, \ldots, x_{r}, a_{1}, b_{1}, \ldots, a_{\gamma}, b_{\gamma} \mid x_{1}^{m_{1}}=\ldots=x_{r}^{m_{r}}=1, \prod_{i=1}^{\gamma}\left[a_{i}, b_{i}\right] \prod_{j=1}^{r} x_{j}=1\right\rangle ;
$$

- $\mathcal{O}_{\sigma}=\widetilde{\mathcal{S}} / \mathrm{U}$ is homeomorphic to compact, closed surface of genus γ with distinguished r points, i-th point is endowed with branch index m_{i};
■ $\mathrm{G}=\mathrm{U} / \mathrm{K}$ is finite group acting discretely on $\mathcal{S}_{8}, \mathrm{~K} \unlhd \mathrm{U}$ is of finite index and torsion-free.

Branched coverings of maps

■ Map M (no semi-edges) is of genus g, Aut $^{+} \mathbf{M}=\mathrm{G}$ has discrete action on \mathcal{S}_{g};

Branched coverings of maps

■ Map \mathbf{M} (no semi-edges) is of genus g, Aut $^{+} \mathbf{M}=\mathrm{G}$ has discrete action on \mathcal{S}_{g};
■ $r: \mathbf{M} \rightarrow \mathbf{M} / \mathrm{G} \equiv p: \mathcal{S}_{g} \rightarrow \mathcal{S}_{g} / \mathrm{G}$;

Branched coverings of maps

■ Map \mathbf{M} (no semi-edges) is of genus g, Aut $^{+} \mathbf{M}=\mathrm{G}$ has discrete action on \mathcal{S}_{g};
■ $r: \mathbf{M} \rightarrow \mathbf{M} / \mathrm{G} \equiv p: \mathcal{S}_{g} \rightarrow \mathcal{S}_{g} / \mathrm{G}$;
■ $\overline{\mathbf{M}}=\mathbf{M} / \mathrm{G}$ is the map on orbifold;

Branched coverings of maps

■ Map M (no semi-edges) is of genus g, Aut $^{+} \mathbf{M}=\mathrm{G}$ has discrete action on \mathcal{S}_{g};
■ $r: \mathbf{M} \rightarrow \mathbf{M} / \mathrm{G} \equiv p: \mathcal{S}_{g} \rightarrow \mathcal{S}_{g} / \mathrm{G}$;

- $\overline{\mathbf{M}}=\mathbf{M} / \mathrm{G}$ is the map on orbifold;
- r is regular covering transformation;

Branched coverings of maps

■ Map \mathbf{M} (no semi-edges) is of genus g, Aut $^{+} \mathbf{M}=\mathrm{G}$ has discrete action on \mathcal{S}_{g};
■ $r: \mathbf{M} \rightarrow \mathbf{M} / \mathrm{G} \equiv p: \mathcal{S}_{g} \rightarrow \mathcal{S}_{g} / \mathrm{G}$;
■ $\overline{\mathbf{M}}=\mathbf{M} / \mathrm{G}$ is the map on orbifold;

- r is regular covering transformation;

■ M can be reconstructed as a derived map with $C T(r)=\mathrm{G}=\mathrm{Aut}^{+} \mathbf{M}$;

Maps on orbifolds

Let \mathbf{M} be a map on orbifold. Then
■ M may have semi-edges, free end of each one is the branch point of index 2,

Maps on orbifolds

Let \mathbf{M} be a map on orbifold. Then
■ M may have semi-edges, free end of each one is the branch point of index 2 ,
■ any vertex of \mathbf{M} might be a branch point,

Maps on orbifolds

Let \mathbf{M} be a map on orbifold. Then
■ M may have semi-edges, free end of each one is the branch point of index 2 ,
■ any vertex of \mathbf{M} might be a branch point,

- the centre of any face of \mathbf{M} might be a branch point

Isomorphisms

Let \mathbf{M} and \mathbf{N} be maps on orbifolds. The mapping $\varphi: \mathbf{M} \rightarrow \mathbf{N}$ is isomorphism of maps on orbifolds if

■ \mathbf{M} and \mathbf{N} sits on the same orbifold;

Isomorphisms

Let \mathbf{M} and \mathbf{N} be maps on orbifolds. The mapping $\varphi: \mathbf{M} \rightarrow \mathbf{N}$ is isomorphism of maps on orbifolds if

- \mathbf{M} and \mathbf{N} sits on the same orbifold;

■ $\varphi: \mathbf{M} \rightarrow \mathbf{N}$ is map isomorphism (preserves V, E, F);

Isomorphisms

Let \mathbf{M} and \mathbf{N} be maps on orbifolds. The mapping $\varphi: \mathbf{M} \rightarrow \mathbf{N}$ is isomorphism of maps on orbifolds if

- \mathbf{M} and \mathbf{N} sits on the same orbifold;

■ $\varphi: \mathbf{M} \rightarrow \mathbf{N}$ is map isomorphism (preserves V, E, F);

- φ maps branch points to branch points;

Isomorphisms

Let \mathbf{M} and \mathbf{N} be maps on orbifolds. The mapping $\varphi: \mathbf{M} \rightarrow \mathbf{N}$ is isomorphism of maps on orbifolds if

■ \mathbf{M} and \mathbf{N} sits on the same orbifold;
■ $\varphi: \mathbf{M} \rightarrow \mathbf{N}$ is map isomorphism (preserves V, E, F);
■ φ maps branch points to branch points;

- φ preserves branch indices.

Quotients of edge transitive maps

■ $\overline{\mathbf{M}}=\mathbf{M} /$ Aut $^{+} \mathbf{M}$ is sitting on an orbifold;
■ $\overline{\mathbf{M}}$ has at most two edges;
■ if $\overline{\mathbf{M}}$ has two edges, then a reflection of $\overline{\mathbf{M}}$ transposes them.

Quotients of edge transitive maps

■ $\overline{\mathbf{M}}=\mathbf{M} /$ Aut $^{+} \mathbf{M}$ is sitting on an orbifold;
■ M has at most two edges;
■ if $\overline{\mathbf{M}}$ has two edges, then a reflection of $\overline{\mathbf{M}}$ transposes them.

How derive maps upstairs

■ T-reduced voltage assignment on $\overline{\mathbf{M}}$ is $\xi: V \cup D \rightarrow G$ such that
1 all darts $D^{+}(T)$ on the rooted spanning tree (T, x_{0}) receive trivial voltages,
$2 \xi_{x L}=\xi_{x}^{-1}$ for all $x \in D$,
$3 G=\left\langle\left\{\xi_{x}: x \in D \cup V\right\}\right\rangle$.

How derive maps upstairs

■ T-reduced voltage assignment on $\overline{\mathbf{M}}$ is $\xi: V \cup D \rightarrow G$ such that
1 all darts $D^{+}(T)$ on the rooted spanning tree $\left(T, x_{0}\right)$ receive trivial voltages,
$2 \xi_{x L}=\xi_{x}^{-1}$ for all $x \in D$,
$3 G=\left\langle\left\{\xi_{x}: x \in D \cup V\right\}\right\rangle$.
■ Derived map $\mathbf{M}=\overline{\mathbf{M}}^{\xi}=\left(D^{\xi}, R^{\xi}, L^{\xi}\right), D^{\xi}=D \times G$ is given by

$$
\begin{aligned}
& (x, g) R^{\xi}=\left\{\begin{array}{cc}
\left(x R, g \cdot \xi_{v}\right), & x \in D^{+}(T) \\
(x R, g), & \text { otherwise }
\end{array}\right. \\
& (x, g) L^{\xi}=\left(x L, g \cdot \xi_{x}\right)
\end{aligned}
$$

Maps with voltages

Computation

■ given $g>1$ take all (numerical) solutions of RH equation - tuples $|\mathrm{G}|, \sigma$;
■ search for normal subgroups of index $d .|\mathrm{G}|$;
■ check whether $|\mathrm{G}|=\mid$ Aut $^{+} \mathbf{M} \mid$.

E1	$\left\langle x_{1}, x_{2} \mid x_{1}^{k}=x_{2}^{2}=\left(x_{1}^{-1} x_{2}\right)^{m}=1\right\rangle$	$d=1$
E2	$\left\langle y_{1}, y_{2}, y_{3}, r\right\| y_{1}^{k}=y_{2}^{2}=y_{3}^{2}=\left(y_{1}^{-1} y_{2} y_{3}\right)^{m}=1$, $\left.r^{2}=1, y_{1}^{r}=y_{1}^{-1}, y_{2}^{r}=y_{3}, y_{3}^{r}=y_{2}\right\rangle$	$d=2$
E3	$\left\langle x_{1}, x_{2} \mid x_{1}^{k}=x_{2}^{l}=\left(x_{2}^{-1} x_{1}^{-1}\right)^{m}=1\right\rangle$	$d=1$
E4	$\left\langle y_{1}, y_{2}, y_{3}, r \mid y_{1}^{k}=y_{2}^{l}=y_{3}^{m}=\left(y_{1}^{-1} y_{2}^{-1} y_{3}^{-1}\right)^{n}=1,\right\rangle$ $\left.r^{2}=1, y_{1}^{r}=y_{2}^{-1}, y_{2}^{r}=y_{1}^{-1}, y_{3}^{r}=y_{3}^{-1}\right\rangle$	$d=2$
E5a	$\left\langle y_{1}, y_{2}, y_{3}, r \mid y_{1}^{k}=y_{2}^{l}=\left(y_{3} y_{2}^{-1}\right)^{m}=\left(y_{3}^{-1} y_{1}^{-1}\right)^{n}=1,\right\rangle$ $\left.r^{2}=1, y_{1}^{r}=y_{1}^{-1}, y_{2}^{r}=y_{2}^{-1}, y_{3}^{r}=\left(y_{2} y_{3} y_{2}^{-1}\right)^{-1}\right\rangle$	$d=2$
E5b	$\left\langle y_{1}, y_{2}, y_{3}, r \mid y_{1}^{k}=y_{2}^{l}=\left(y_{3} y_{2}^{-1}\right)^{m}=\left(y_{3}^{-1} y_{1}^{-1}\right)^{n}=1,\right\rangle$ $\left.r^{2}=1, y_{1}^{r}=y_{2}^{-1}, y_{2}^{r}=y_{1}^{-1}, y_{3}^{r}=\left(y_{1} y_{3}^{-1} y_{1}^{-1}\right)^{-1}\right\rangle$	$d=2$
E6a	$\langle z, a, b, s\| z^{k}=\left(z^{-1} a b^{-1} a^{-1} b\right)^{m}=1$, $\left.s^{2}=1, z^{s}=z^{-1}, a^{s}=b^{-1}, b^{s}=a^{-1}\right\rangle$	$d=2$
E6b	$\langle z, a, b, s\| z^{k}=\left(z^{-1} a b^{-1} a^{-1} b\right)^{m}=1$, $\left.s^{2}=1, z^{s}=z^{-1}, a^{s}=b, b^{s}=a\right\rangle$	$d=2$

Results

g	Family / Subfamily								Maps
	E1	E2	E3	E4	E5a	E5b	E6a	E6b	
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

■ maps of different families cannot be isomorphic;

Results

g	Family / Subfamily							Maps	
	E1	E2	E3	E4	E5a	E5b	E6a		
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

■ maps of different families cannot be isomorphic;

- dual maps were not computed here

Results

g	Family / Subfamily							Maps	
	E1	E2	E3	E4	E5a	E5b	E6a		
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

■ maps of different families cannot be isomorphic;

- dual maps were not computed here

■ see
http://www.savbb.sk/~karabas/science.html\#etran;

Results

g	Family / Subfamily							Maps	
	E1	E2	E3	E4	E5a	E5b	E6a		
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

■ maps of different families cannot be isomorphic;

- dual maps were not computed here

■ see
http://www.savbb.sk/~karabas/science.html\#etran;
■ all maps as ($D ; R, L$), we can derive those with $(D ; R L, L)$;

Results

g	Family / Subfamily								Maps
	E1	E2	E3	E4	E5a	E5b	E6a	E6b	
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

■ maps of different families cannot be isomorphic;

- dual maps were not computed here

■ see
http://www.savbb.sk/~karabas/science.html\#etran;
■ all maps as ($D ; R, L$), we can derive those with ($D ; R L, L$);

- construction of non-orientable maps needs more effort.

