Edge-transitive maps and discrete group actions

Ján Karabáš and Roman Nedela

Matej Bel University, Banská Bystrica

SIGMAP 2014, West Malvern, 8. 7. 2014

Classification of edge transitive maps (ET)

Problem

Classify edge-transitive maps of genus g > 1 up to isomorphism classes.

Problem

Classify edge-transitive maps of genus g > 1 up to isomorphism classes.

 Graver & Watkins (1997) recognised 14 families of edge-transitive maps (ET), both orientable and non-orientable,

Problem

Classify edge-transitive maps of genus g > 1 up to isomorphism classes.

- Graver & Watkins (1997) recognised 14 families of edge-transitive maps (ET), both orientable and non-orientable,
- Širáň, Watkins & Tucker (2001) proved that the families are pairwise different,

Problem

Classify edge-transitive maps of genus g > 1 up to isomorphism classes.

- Graver & Watkins (1997) recognised 14 families of edge-transitive maps (ET), both orientable and non-orientable,
- Širáň, Watkins & Tucker (2001) proved that the families are pairwise different,
- Orbanić, Pisanski, Pellicer & Tucker (2011) described all these families in terms of quotient maps and voltage assignments on possibly non-orientable surfaces with non-empty boundary. Their classification of ET's ranges for $\chi \ge -2$.

Such ET's (on an orientable surface) can be constructed

• Search for suitable normal subgroups of indices $720 = 2^4 \cdot 3^2 \cdot 5$, $1440 = 2^5 \cdot 3^2 \cdot 5$, or $2880 = 2^6 \cdot 3^2 \cdot 5$ in

$$\mathcal{M} = \langle a, b, c \mid c^2 = (ab)^2 = (bc)^2 = (ac)^2 = 1 \rangle;$$

Such ET's (on an orientable surface) can be constructed

• Search for suitable normal subgroups of indices $720 = 2^4 \cdot 3^2 \cdot 5$, $1440 = 2^5 \cdot 3^2 \cdot 5$, or $2880 = 2^6 \cdot 3^2 \cdot 5$ in

$$\mathcal{M} = \langle a, b, c \mid c^2 = (ab)^2 = (bc)^2 = (ac)^2 = 1 \rangle;$$

Check whether the quotient group contains an image of even-word subgroup of *M* isomorphic to A₆; Such ET's (on an orientable surface) can be constructed

Search for suitable normal subgroups of indices $720 = 2^4 \cdot 3^2 \cdot 5$, $1440 = 2^5 \cdot 3^2 \cdot 5$, or $2880 = 2^6 \cdot 3^2 \cdot 5$ in

$$\mathcal{M} = \langle a, b, c \mid c^2 = (ab)^2 = (bc)^2 = (ac)^2 = 1 \rangle;$$

- Check whether the quotient group contains an image of even-word subgroup of *M* isomorphic to A₆;
- Reconstruct derived maps.

How easy...

 S₁₀ is the surface with minimum genus admitting such edge-transitive maps;

- S₁₀ is the surface with minimum genus admitting such edge-transitive maps;
- 2 of them are regular maps (see M. Conder's list), one is the dual of the other, both are reflexible and polyhedral;

- S₁₀ is the surface with minimum genus admitting such edge-transitive maps;
- 2 of them are regular maps (see M. Conder's list), one is the dual of the other, both are reflexible and polyhedral;
- 3 of them are regular hypermaps (see other M. Conder's list), all are reflexible, two are polytopal, one is polyhedral;

- S₁₀ is the surface with minimum genus admitting such edge-transitive maps;
- 2 of them are regular maps (see M. Conder's list), one is the dual of the other, both are reflexible and polyhedral;
- 3 of them are regular hypermaps (see other M. Conder's list), all are reflexible, two are polytopal, one is polyhedral;
- the remaining 6 maps Aut⁺ M has two orbits on edges, three of them are polytopal, three of them are not simple, all are reflexible.

- Riemann uniformization;
- Koebe Theorem.

regular branched coverings;

Koebe Theorem.

• \widetilde{S} is the universal cover of both S_g and $\mathcal{O}(\sigma)$;

- regular branched coverings;
- Riemann uniformization;
- Koebe Theorem.

- \widetilde{S} is the universal cover of both S_g and $\mathcal{O}(\sigma)$;
- U acts properly discontinuously on $\widetilde{\mathcal{S}}$, U \hookrightarrow Aut $\widetilde{\mathcal{S}}$, U $\cong \pi_1(\mathcal{O}_{\sigma})$;

- regular branched coverings;
- Riemann uniformization;
- Koebe Theorem.

- $\widetilde{\mathcal{S}}$ is the universal cover of both \mathcal{S}_g and $\mathcal{O}(\sigma)$;
- U acts properly discontinuously on S̃, U → Aut S̃, U ≃ π₁(O_σ);
 groups U and K are Fuchsian groups;

- regular branched coverings;
- Riemann uniformization;
- Koebe Theorem.

- \widetilde{S} is the universal cover of both S_g and $\mathcal{O}(\sigma)$;
- U acts properly discontinuously on *S̃*, U → Aut *S̃*, U ≃ π₁(*O*_σ);
 groups U and K are Fuchsian groups;

• $K \leq_n U$, $S_g = \widetilde{S}/K$, G = U/K, G < Aut S has discrete action on S;

- regular branched coverings;
- Riemann uniformization;
- Koebe Theorem.

- \widetilde{S} is the universal cover of both S_g and $\mathcal{O}(\sigma)$;
- U acts properly discontinuously on $\widetilde{\mathcal{S}}$, U \hookrightarrow Aut $\widetilde{\mathcal{S}}$, U $\cong \pi_1(\mathcal{O}_{\sigma})$;
- groups U and K are Fuchsian groups;

• $K \leq_n U, S_g = \widetilde{S}/K, G = U/K, G < Aut S$ has discrete action on S;

• action of G on S is not fixed-point-free, \mathcal{O}_{σ} is an orbifold;

- regular branched coverings;
- Riemann uniformization;
- Koebe Theorem.

- \widetilde{S} is the universal cover of both S_g and $\mathcal{O}(\sigma)$;
- U acts properly discontinuously on $\widetilde{\mathcal{S}}$, U \hookrightarrow Aut $\widetilde{\mathcal{S}}$, U $\cong \pi_1(\mathcal{O}_{\sigma})$;
- groups U and K are Fuchsian groups;

• $K \leq_n U, S_g = \widetilde{S}/K, G = U/K, G < Aut S$ has discrete action on S;

- action of G on S is not fixed-point-free, \mathcal{O}_{σ} is an orbifold;
- $\sigma = (\gamma; \{m_1, m_2, \dots, m_r\})$ is the signature of the orbifold \mathcal{O}_{σ} .

■ $p: S_g \to O_\sigma$ is a branched covering, σ follows from Riemann-Hurwitz equation

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right), \ \forall i: \ m_i \ge 2, \ m_i \mid |G|;$$

■ $p: S_g \to O_\sigma$ is a branched covering, σ follows from Riemann-Hurwitz equation

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right), \ \forall i: \ m_i \ge 2, \ m_i \mid |G|;$$

■ U $\cong \pi_1(\mathcal{O}_{\sigma})$ is a Fuchsian group with signature σ and the presentation

$$\langle x_1, \ldots, x_r, a_1, b_1, \ldots, a_{\gamma}, b_{\gamma} \mid x_1^{m_1} = \ldots = x_r^{m_r} = 1, \prod_{i=1}^{\gamma} [a_i, b_i] \prod_{j=1}^r x_j = 1 \rangle;$$

■ $p: S_g \to O_\sigma$ is a branched covering, σ follows from Riemann-Hurwitz equation

$$2 - 2g = |G| \left(2 - 2\gamma - \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right), \ \forall i: \ m_i \ge 2, \ m_i \mid |G|;$$

■ U $\cong \pi_1(\mathcal{O}_{\sigma})$ is a Fuchsian group with signature σ and the presentation

$$\langle x_1, \ldots, x_r, a_1, b_1, \ldots, a_{\gamma}, b_{\gamma} \mid x_1^{m_1} = \ldots = x_r^{m_r} = 1, \prod_{i=1}^{\gamma} [a_i, b_i] \prod_{j=1}^r x_j = 1 \rangle;$$

• $\mathcal{O}_{\sigma} = \widetilde{\mathcal{S}}/\mathbf{U}$ is homeomorphic to compact, closed surface of genus γ with distinguished *r* points, *i*-th point is endowed with branch index m_i ;

■ $p: S_g \to O_\sigma$ is a branched covering, σ follows from Riemann-Hurwitz equation

$$2-2g = |G|\left(2-2\gamma - \sum_{i=1}^{r}\left(1-rac{1}{m_{i}}
ight)
ight), \ orall i: \ m_{i} \geq 2, \ m_{i} \mid |G|;$$

■ U $\cong \pi_1(\mathcal{O}_{\sigma})$ is a Fuchsian group with signature σ and the presentation

$$\langle x_1, \ldots, x_r, a_1, b_1, \ldots, a_{\gamma}, b_{\gamma} \mid x_1^{m_1} = \ldots = x_r^{m_r} = 1, \prod_{i=1}^{\gamma} [a_i, b_i] \prod_{j=1}^r x_j = 1 \rangle;$$

- $\mathcal{O}_{\sigma} = \widetilde{\mathcal{S}}/\mathbf{U}$ is homeomorphic to compact, closed surface of genus γ with distinguished *r* points, *i*-th point is endowed with branch index m_i ;
- G = U/K is finite group acting discretely on S_g , $K \leq U$ is of finite index and torsion-free.

•
$$r: \mathbf{M} \to \mathbf{M}/\mathbf{G} \equiv p: \mathcal{S}_g \to \mathcal{S}_g/\mathbf{G};$$

$$\bullet r: \mathbf{M} \to \mathbf{M}/\mathbf{G} \equiv p: \mathcal{S}_g \to \mathcal{S}_g/\mathbf{G};$$

• $\bar{\mathbf{M}} = \mathbf{M}/\mathbf{G}$ is the map on orbifold;

- Map M (no semi-edges) is of genus g , Aut⁺ M = G has discrete action on S_g;
- $\blacksquare r: \mathbf{M} \to \mathbf{M}/\mathbf{G} \equiv p: \mathcal{S}_g \to \mathcal{S}_g/\mathbf{G};$
- $\bar{\mathbf{M}} = \mathbf{M}/\mathbf{G}$ is the map on orbifold;
- \blacksquare *r* is regular covering transformation;

•
$$r: \mathbf{M} \to \mathbf{M}/\mathbf{G} \equiv p: \mathcal{S}_g \to \mathcal{S}_g/\mathbf{G};$$

- $\bar{\mathbf{M}} = \mathbf{M}/\mathbf{G}$ is the map on orbifold;
- \blacksquare *r* is regular covering transformation;
- **M** can be reconstructed as a derived map with $CT(r) = G = Aut^+ M$;

Let M be a map on orbifold. Then

 M may have semi-edges, free end of each one is the branch point of index 2, Let \mathbf{M} be a map on orbifold. Then

- M may have semi-edges, free end of each one is the branch point of index 2,
- any vertex of M might be a branch point,

Let M be a map on orbifold. Then

- M may have semi-edges, free end of each one is the branch point of index 2,
- any vertex of M might be a branch point,
- the centre of any face of M might be a branch point

Let M and N be maps on orbifolds. The mapping $\varphi\colon M\to N$ is isomorphism of maps on orbifolds if

M and N sits on the same orbifold;

Let M and N be maps on orbifolds. The mapping $\varphi\colon M\to N$ is isomorphism of maps on orbifolds if

- M and N sits on the same orbifold;
- $\varphi : \mathbf{M} \to \mathbf{N}$ is map isomorphism (preserves V, E, F);

Let M and N be maps on orbifolds. The mapping $\varphi\colon M\to N$ is isomorphism of maps on orbifolds if

- M and N sits on the same orbifold;
- $\varphi : \mathbf{M} \to \mathbf{N}$ is map isomorphism (preserves V, E, F);
- φ maps branch points to branch points;

Let ${\bf M}$ and ${\bf N}$ be maps on orbifolds. The mapping $\varphi\colon {\bf M}\to {\bf N}$ is isomorphism of maps on orbifolds if

- M and N sits on the same orbifold;
- $\varphi : \mathbf{M} \to \mathbf{N}$ is map isomorphism (preserves V, E, F);
- φ maps branch points to branch points;
- φ preserves branch indices.

Quotients of edge transitive maps

- $\label{eq:matrix} \begin{tabular}{ll} \begin{tabular}{ll} \bar{M} = M / \operatorname{Aut}^+ M \text{ is sitting on an orbifold;} \\ \end{tabular}$
- M
 M
 has at most two edges;
- \blacksquare if $\bar{\mathbf{M}}$ has two edges, then a reflection of $\bar{\mathbf{M}}$ transposes them.

Quotients of edge transitive maps

- $\bar{\mathbf{M}} = \mathbf{M} / \operatorname{Aut}^+ \mathbf{M}$ is sitting on an orbifold;
- M
 has at most two edges;
- \blacksquare if $\bar{\mathbf{M}}$ has two edges, then a reflection of $\bar{\mathbf{M}}$ transposes them.

How derive maps upstairs

T-reduced voltage assignment on $\overline{\mathbf{M}}$ is $\xi: V \cup D \to G$ such that

1 all darts $D^+(T)$ on the rooted spanning tree (T, x_0) receive trivial voltages,

2
$$\xi_{xL} = \xi_x^{-1}$$
 for all $x \in D$,

 $G = \langle \{\xi_x : x \in D \cup V\} \rangle.$

How derive maps upstairs

T-reduced voltage assignment on $\overline{\mathbf{M}}$ is $\xi: V \cup D \to G$ such that

1 all darts $D^+(T)$ on the rooted spanning tree (T, x_0) receive trivial voltages,

2
$$\xi_{xL} = \xi_x^{-1}$$
 for all $x \in D$,
3 $G = \langle \{\xi_x : x \in D \cup V\} \rangle$.

Derived map $\mathbf{M} = \bar{\mathbf{M}}^{\xi} = (D^{\xi}, R^{\xi}, L^{\xi}), D^{\xi} = D \times G$ is given by

$$(x,g)R^{\xi} = \begin{cases} (xR,g \cdot \xi_v), & x \in D^+(T), \\ \\ (xR,g), & \text{otherwise} \end{cases}$$
$$(x,g)L^{\xi} = (xL,g \cdot \xi_x)$$

Maps with voltages

Computation

- solutions of RH equation tuples $|G|, \sigma$;
- search for normal subgroups of index d.|G|;

check whether	$ \mathbf{G} =$	Aut ⁺	$\mathbf{M} .$
---------------	------------------	------------------	----------------

E1	$\langle x_1, x_2 \mid x_1^k = x_2^2 = (x_1^{-1}x_2)^m = 1 \rangle$	d = 1
E2	$\langle y_1, y_2, y_3, r \mid y_1^k = y_2^2 = y_3^2 = (y_1^{-1}y_2y_3)^m = 1,$	<i>d</i> = 2
	$r^2=1, y_1^r=y_1^{-1}, y_2^r=y_3, y_3^r=y_2 angle$	
E3	$\langle x_1, x_2 \mid x_1^k = x_2^l = (x_2^{-1}x_1^{-1})^m = 1 angle$	d = 1
E4	$\langle y_1, y_2, y_3, r \mid y_1^k = y_2^l = y_3^m = (y_1^{-1}y_2^{-1}y_3^{-1})^n = 1, \rangle$	<i>d</i> = 2
	$r^2 = 1, y_1^r = y_2^{-1}, y_2^r = y_1^{-1}, y_3^r = y_3^{-1} \rangle$	
E5a	$\langle y_1, y_2, y_3, r \mid y_1^k = y_2^l = (y_3 y_2^{-1})^m = (y_3^{-1} y_1^{-1})^n = 1, \rangle$	<i>d</i> = 2
	$r^{2} = 1, y_{1}^{r} = y_{1}^{-1}, y_{2}^{r} = y_{2}^{-1}, y_{3}^{r} = (y_{2}y_{3}y_{2}^{-1})^{-1} \rangle$	
E5b	$\langle y_1, y_2, y_3, r \mid y_1^k = y_2^l = (y_3 y_2^{-1})^m = (y_3^{-1} y_1^{-1})^n = 1, \rangle$	<i>d</i> = 2
	$r^2 = 1, y_1^r = y_2^{-1}, y_2^r = y_1^{-1}, y_3^r = (y_1y_3^{-1}y_1^{-1})^{-1}$	
E6a	$\langle z, a, b, s \mid z^k = (z^{-1}ab^{-1}a^{-1}b)^m = 1,$	<i>d</i> = 2
	$s^2=1, z^s=z^{-1}, a^s=b^{-1}, b^s=a^{-1} angle$	
E6b	$\langle z, a, b, s \mid z^k = (z^{-1}ab^{-1}a^{-1}b)^m = 1,$	<i>d</i> = 2
	$s^2=1, z^s=z^{-1}, a^s=b, b^s=a angle$	

Edge-transitive maps... (J. Karabáš and R. Nedela, UMB)

a	Family / Subfamily								
8	E1	E2	E3	E4	E5a	E5b	E6a	E6b	iviaps
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

maps of different families cannot be isomorphic;

a	Family / Subfamily								
8	E1	E2	E3	E4	E5a	E5b	E6a	E6b	iviaps
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

maps of different families cannot be isomorphic;

dual maps were not computed here

a		Family / Subfamily							Mane
8	E1	E2	E3	E4	E5a	E5b	E6a	E6b	maps
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

maps of different families cannot be isomorphic;

- dual maps were not computed here
- see

http://www.savbb.sk/~karabas/science.html#etran;

a		Family / Subfamily							Mane
8	E1	E2	E3	E4	E5a	E5b	E6a	E6b	maps
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

maps of different families cannot be isomorphic;

- dual maps were not computed here
- see

http://www.savbb.sk/~karabas/science.html#etran;

■ all maps as (D; R, L), we can derive those with (D; RL, L);

a		Family / Subfamily							Mane
8	E1	E2	E3	E4	E5a	E5b	E6a	E6b	maps
2	10	1	18	2	44	0	1	0	76
3	20	2	46	6	108	0	1	1	184
4	20	7	53	13	137	0	6	2	238
5	26	11	54	20	177	0	5	4	297
6	23	9	70	16	221	2	7	4	352
7	27	19	80	38	317	0	10	8	499
8	24	9	68	18	237	3	8	6	373
9	52	39	141	77	567	0	26	16	918
10	54	26	158	56	544	0	27	16	881

maps of different families cannot be isomorphic;

- dual maps were not computed here
- see

http://www.savbb.sk/~karabas/science.html#etran;

- all maps as (D; R, L), we can derive those with (D; RL, L);
- construction of non-orientable maps needs more effort.