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Outline of the talk

I Hypermap operations on dessins: action of OutF2
∼= GL2 Z.

I Galois operations on dessins: action of the absolute Galois
group GalQ.

I Some open problems.



Dessins and permutations

A dessin D, or equivalently a Bely̆ı pair (X, β), gives rise to

I a 2-generator permutation group G = 〈x , y〉 (finite, transitive)
on the set E of edges of a bipartite map (compact, oriented),

I a conjugacy class of subgroups M (stabilisers of edges) of
finite index in the free group F2 = 〈X ,Y | −〉 of rank 2.

The action F2 → G ≤ SymE of F2 on E is given by X 7→ x ,
Y 7→ y .

G is the monodromy group MonD of D; its centraliser in
SymE is the automorphism group AutD of D (preserving
orientation and vertex-colours).



↓ β (Bely̆ı function)

Ĉ = C ∪ {∞}

X

Figure : A triangulation: white, black and red vertices over 0, 1 and ∞

(Recall Jürgen’s talk.)
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Figure : A bipartite map: white and black vertices over 0 and 1

This is the Walsh bipartite map of a hypermap (David’s talk).
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Figure : The permutations x , y and z = (xy)−1

Here x and y rotate edges around their incident white and black
vertices, following the orientation of the underlying surface X.
(These were σ, α and (σα)−1 in David’s talk.)



Dessins and permutations

A dessin D, or equivalently a Bely̆ı pair (X, β), may be regarded as

I a 2-generator permutation group G = 〈x , y〉 (finite, transitive)
on the set E of edges of a bipartite map (compact, oriented),

I a conjugacy class of subgroups M (stabilisers of edges) of
finite index in the free group F2 = 〈X ,Y | −〉 of rank 2.

Here x and y rotate edges around their incident white and black
vertices, following the orientation of the underlying surface X.

Equivalently they, together with z = (xy)−1, are the monodromy
permutations (of the sheets of the covering) for the associated
Bely̆ı function β at the ramification points 0, 1 and ∞ in Ĉ.



The universal bipartite map B∞
Surface = hyperbolic plane H = {z ∈ C | Im z > 0}.
Vertices = rationals a/b, b odd; black or white as a is even or odd.
Edge a/b to c/d (hyperbolic geodesic) iff ad − bc = ±1.
Face-centres a/b with b even (including ∞ = 1/0).
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Figure : Part of B∞ (for 0 ≤ Re z ≤ 2 and b ≤ 5); repeat with period 2.



Automorphisms of B∞
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AutB∞ is a free group F2 of rank 2, generated by Möbius
transformations

X : z 7→ z

−2z + 1
and Y : z 7→ z − 2

2z − 3

fixing the black and white vertices at 0 and 1 and cyclicly rotating
their incident edges. (This is the principal congruence subgroup
Γ(2) of level 2 in the modular group Γ = PSL2Z.)



From dessins to Bely̆ı pairs

Given a subgroup M of finite index in F2 = AutB∞, define:

I X to be the compactification M\H of the quotient surface
M\H,

I D to be the dessin M\B∞ on X,

I β : X→ Ĉ to be the projection M\H→ F2\H induced by the
inclusion M ≤ F2.

Then (X, β) is the Bely̆ı pair corresponding to the dessin D and
subgroup M (up to conjugacy). Thus we have correspondences

(X, β)↔ D ↔ {Mg | g ∈ F2}.



The group Ω of hypermap operations
The group AutF2 acts naturally on conjugacy classes of subgroups
M ≤ F2, and hence on dessins. Inner automorphisms act trivially,
so there is an induced action of the outer automorphism group
OutF2 = AutF2/InnF2 on dessins. For each n ≥ 1 there is an
epimorphism

OutFn → Aut (F ab
n = Fn/F

′
n
∼= Zn) = GLn Z,

and one can show that for n = 2 this is an isomorphism:

OutF2
∼= GL2 Z.

Thus GL2 Z acts on dessins. Lynne James (EJC, 1988) showed
that this action is faithful, so we obtain a group

Ω ∼= OutF2
∼= GL2 Z

of hypermap operations on dessins.



Examples of operations
The automorphism X ↔ Y of F2, corresponding to the matrix(

0 1
1 0

)
∈ GL2 Z,

induces the operation δ of white/black duality, transposing colours
of vertices. It acts on Bely̆ı pairs by (X, β)↔ (X, 1− β). The
automorphism X 7→ Y 7→ Z 7→ X of F2, corresponding to(

0 1
−1 −1

)
∈ GL2 Z,

induces a triality operation τ , permuting white and black vertices
and face-centres in a 3-cycle. These operations generate the
subgroup

ΩM = 〈δ, τ〉 ∼= S3
∼= D3

of Mach̀ı operations (Mach̀ı, Discrete Math. 1982), preserving X.



More examples of operations

The automorphism X ↔ X−1, Y ↔ Y−1 of F2, corresponding to

−I =

(
−1 0
0 −1

)
∈ GL2 Z,

induces the operation ι : (X, β) 7→ (X, β) of complex conjugation
on dessins. It is a central involution in Ω. The operations δ, τ and
ι generate a subgroup

Ω1 = 〈δ, τ, ι〉 ∼= D3 × C2
∼= D6

of Ω, preserving the genus of a dessin.



Even more examples of operations

The automorphism X ↔ X , Y ↔ Y−1 of F2, corresponding to(
1 0
0 −1

)
∈ GL2 Z,

induces a Petrie operation π ∈ Ω, an involution reversing the
rotation of edges around black vertices. This preserves the
embedded bipartite graph, but may change the face valencies and
the genus of a dessin.



π
←→

Figure : Sphere and torus embeddings of the cube graph Q3



Even more examples of operations

The automorphism X ↔ X , Y ↔ Y−1 of F2, corresponding to(
1 0
0 −1

)
∈ GL2 Z,

induces a Petrie operation π ∈ Ω, an involution reversing the
rotation of edges around black vertices. This preserves the
embedded bipartite graph, but may change the face valencies and
the genus of a dessin. The involutions δ and π generate a subgroup

Ω2 = 〈δ, π〉 ∼= D4.



Free product decomposition

Using a presentation of GL2 Z (Coxeter & Moser, §7.2) one can
show that

Ω = Ω1 ∗Ω0 Ω2
∼= D6 ∗D2 D4,

the free product of Ω1 and Ω2, amalgamating a common subgroup

Ω0 = 〈δ, ι〉 ∼= D2
∼= C2 × C2.

Thus Ω is generated by operations of finite order; there are seven
conjugacy classes of these, described by Pinto and J., Discrete
Math. 2010.



Invariants of Ω

The operations in Ω preserve

I the monodromy group G = MonD of a dessin;

I the automorphism group A = AutD of a dessin;

I regularity of a dessin;

I the ‘size’ |E | of a dessin;

I the cycle structure of the commutator [x , y ] acting on E .

However, they do not, in general, preserve the type or the genus of
a dessin.



An example

It follows from results of Hall (QJM, 1936) that there are 19
regular dessins D with automorphism group A ∼= A5.

These include the dodecahedron of type (3, 2, 5), the icosahedron
of type (5, 2, 3) (both of genus 0), and the great dodecahedron, of
type (5, 2, 5) and genus 4 (classified by Breda and J., 2001).

Group-theoretic results of Bernhard and Hanna Neumann
(Math. Nachr., 1951) on T -systems show that they form two orbits
under Ω of lengths 9 and 10, as [x , y ] has order 3 (e.g. the great
dodecahedron) or 5 (e.g. the icosahedron and dodecahedron).



Similar ideas

For dessins of type (p, q,−), with p 6= q both fixed, one can
replace F2 with Cp ∗ Cq, and Ω ∼= OutF2

∼= GL2 Z with

Out (Cp ∗ Cq) ∼= Z×p × Z×q ,

the group of ‘Wilson operations’ on dessins, raising x and y to
primitive powers (Wilson, Pacific J. Math. 1979; Streit, Wolfart
and J., PLMS 2010). This generalises the case (p, 2,−), where

Out (Cp ∗ C2) ∼= Z×p

acts on p-valent maps (Nedela and Škoviera, PLMS 1997). When
p = q one can also include white-black duality δ to give

Out (Cp ∗ Cp) ∼= Z×p o S2
∼= (Z×p × Z×p ) : S2.



Galois operations

A dessin D may be identified with a Bely̆ı pair (X, β), both defined
over the field Q of algebraic numbers.

The absolute Galois group

G = GalQ = AutQ

acts on the coefficients of the equations defining X and β,
inducing actions on Bely̆ı pairs and hence on dessins.



Examples of orbits of G

Jürgen’s talk included an example of a G-orbit of three dessins on
the torus. Here is another orbit of length 3, defined over the
splitting field of 25t3 − 12t2 − 24t − 16, with G inducing S3:

Figure : Three Galois conjugate dessins on the sphere



Galois operations

A dessin D may be identified with a Bely̆ı pair (X, β), both defined
over the field Q of algebraic numbers.

The absolute Galois group

G = GalQ

acts on the coefficients of the equations defining X and β,
inducing actions on Bely̆ı pairs and hence on dessins.

The group G is very important in algebraic number theory, but it is
also very complicated and difficult to work with.

In 1984 Grothendieck suggested studying G through its action on
dessins (and related structures).



Invariants of G

The following properties of a dessin can be defined algebraically,
and are therefore invariant under G (Streit and J., 1997):

I valency distributions of white and black vertices and faces;

I size, type and genus;

I monodromy group and automorphism group.



Faithful action of G

Nevertheless, G acts faithfully on (isomorphism classes of)

I dessins (Grothendieck);

I dessins of a given genus (Girondo and González-Diez);

I plane trees = maps of genus 0 with one face (Schneps);

I regular dessins (González-Diez and Jaikin-Zapirain);

I regular dessins of a given hyperbolic type (G-D and J-Z).



Faithful action of G

Nevertheless, G acts faithfully on (isomorphism classes of)

I dessins (Grothendieck);

I dessins of a given genus (Girondo and González-Diez);

I plane trees = maps of genus 0 with one face (Schneps);

I regular dessins (González-Diez and Jaikin-Zapirain);

I regular dessins of a given hyperbolic type (G-D and J-Z).

Consequence: in principle, one can see ‘all’ of algebraic number
theory by looking at any one of the above classes of dessins.

Practical problem: it is very difficult to give explicit examples of
orbits of G on dessins which reveal much of its structure.



Structure of G

Q =
⋃
K∈K

K ,

where K is the set of Galois (finite, normal) extensions of Q in C.
For each K ∈ K let

GK := GalK ,

a finite group. If K ≥ L in K there is a restriction epimorphism

ρK ,L : GK → GL.

Then
G = lim

←
GK ,

a profinite group (= projective limit of finite groups). Specifically,

G = {(gK ) ∈
∏
K∈K

GK | ρK ,L(gK ) = gL whenever K ≥ L}.



Topology on G

G = {(gK ) ∈
∏
K∈K

GK | ρK ,L(gK ) = gL whenever K ≥ L}

is an uncountable group.

If we put the discrete topology on each GK then
∏

K∈K GK is a
topological group, compact by Tychonoff’s Theorem.

As a closed subgroup, G is also compact in the induced Krull
topology. (Two elements are ‘close’ if they agree on a large
subfield of Q.) The topology is that of a Cantor set.

In the Galois correspondence, subfields of Q correspond to closed
subgroups of G.



Inverse Galois problem

In the Galois correspondence, subfields of Q correspond to closed
subgroups of G.

Hilbert’s conjecture that every finite group F is a Galois group over
Q is equivalent to showing that F is a quotient of G by a closed
normal subgroup.

This has been proved for many F (e.g. solvable, symmetric or
alternating), but it is still open in general.



Some open problems about dessins

I Find good algorithms for determining the Bely̆ı pair (X, β)
corresponding to a dessin D (or at least its moduli field).

I Can one understand Galois orbits without finding explicit
models of Bely̆ı pairs?

I Find orbits of G on (regular) dessins on which it induces a
(highly) non-abelian group.

I What is the relationship between the groups Ω and G, acting
on (regular) dessins? (They do not commute.)



Diolch yn fawr i chi!


