The decorated lattice of biased dessins

Jonathan Fine
Open University
July 2014

Abstract

Dessins are special types of pairs of permutations of the same set. The absolute Galois group Γ acts on dessins. This is deep and important.

I'm going to explain how to add a little more information to a dessin, called a bias. Then all biased dessins form a lattice, and Γ acts on this lattice.

We can decorate this lattice, to produce the decorated lattice of biased dessins \mathcal{L}. The absolute Galois group Γ acts on \mathcal{L}. This is important.

This leads to interesting questions, the most important of which being: Is the automorphism group of \mathcal{L} equal to Γ ? (This is likely to be hard.) Why do biased dessins appear in the Goulden-Jackson-Rattan study of Stanley's polynomial formula for symmetric group characters?

Also interesting is recent activity in dessins coming from quantum field theory. (Eg A006206: David Broadhurst.) And 「 action on knot invariants.

Permutations, pairs of permutations, and dessins

We situate dessins in the theory of permutations. They're a bit like cycles.
Each permutation α of d objects can be decomposed into cycles, and hence induces a partition p_{α} of d. Cycles are irreducible.
The partition p_{α} determines α, up to a relabelling of the objects being permuted. This is called relabelling equivalence. Each α has a relabelling normal form, for example (12345)(678)(9) if p_{α} is $5+3+1$.
Now let (α, β) be a pair of permutations (or permpair for short) on the same finite set E, called the edges of the pair of permutations.
We can relabel E to put α into normal form, and similarly for β. But only rarely can relabelling put both α and β into normal form at the same time.
A dessin is to a pair of permutations as a cycle is to a permutation. Two edges are in the same dessin if $e_{2}=w e_{1}$ for some word w in α and β.

Definition A dessin is an irreducible pair of permutations, considered up to relabelling equivalence. A permpair decomposes into dessins.

Product of dessins, and the lattice \mathcal{L}^{\prime} of biased dessins

We will now define a join operation on 'enhanced dessins' and hence \mathcal{L}^{\prime}. Let R and S be dessins with edge sets E_{R} and E_{S}. The product $E_{R} \times E_{S}$ is the edge set for a permpair $R \times S$, via $\alpha_{R \times S}(r, s)=\left(\alpha_{R} r, \alpha_{S} s\right)$. Usually $R \times S$ is reducible (e.g. when $R=S$, and R is not trivial) and so is not a dessin. Being able to choose an edge in $R \times S$ would solve this.

Definition A biased dessin is a dessin R with a distinguished edge e_{R}.
Definition If R and S are biased dessins, then the join $T=R \vee S$ is the component of $R \times S$ that contains $e_{T}=\left(e_{R}, e_{S}\right) . T$ is a biased dessin.

The projection map $\pi: E_{T} \rightarrow E_{R}$ clearly (1) sends e_{T} to e_{R}, and (2) respects the action of α and β (i.e. $\pi(\alpha t)=\alpha(\pi t)$ etc.)

Definition For any biased dessins T and R we write $T \rightarrow R$ if there is such a map between their edges. There is at most one such map (easy).

Theorem The biased dessins are the nodes of a lattice \mathcal{L}^{\prime}. The join $T=R \vee S$ is the least upper bound of R and S (for the \rightarrow partial order).

Galois action on biased dessins and invariance of \mathcal{L}^{\prime}

The lattice \mathcal{L}^{\prime} is important because (1) the absolute Galois group acts on its nodes (biased dessins), and (2) the group action leaves \mathcal{L}^{\prime} unchanged.

We rely on deep results of Weil, Belyi, Grothendieck and others.

- There is a bijection between dessins and Belyi pairs (maps $M \rightarrow \mathbb{P}_{1}$ from a Riemann surface to \mathbb{P}_{1} that are unramified away from $\left.0,1, \infty\right)$.
- Such maps are defined over the algebraic closure $\overline{\mathbb{Q}}$ of the rationals. Thus the absolute Galois group Γ (automophisms of $\overline{\mathbb{Q}}$) acts on dessins.

Lemma This bijection and the Γ-action extends to biased dessins and biased Belyi pairs (distinguished point in the fibre above $1 / 2 \in \mathbb{P}_{1}$).
Proof The usual proof carries through unchanged to this situation.
Theorem The lattice structure \mathcal{L}^{\prime} is Γ-invariant.
Proof For biased dessins T and R there is a map $M_{T} \rightarrow M_{R}$ (unique if it exists) of covering spaces just in case there is a map $T \rightarrow R$. Thus, on biased Belyi pairs the lattice \mathcal{L}^{\prime} comes from a 「-invariant property.

Decorating \mathcal{L}^{\prime} to obtain \mathcal{L} - nodes

We can decorate \mathcal{L}^{\prime} in a Γ-invariant way. On this slide we decorate the nodes T, and on the next the maps $T \rightarrow R$.

First, we introduce γ, a third permutation that provides additional Γ-invariant information. For Belyi pairs $0,1, \infty$ all have equal standing.

Belyi 0 and 1 on \mathbb{P}_{1} corresponds to dessin α and β. Further, Belyi ∞ corresponds to dessin $\gamma=(\alpha \beta)^{-1}$. Therefore, treat α, β and γ similarly.

For each (biased) dessin T we have the permutation α which acts on the edges E_{T} and hence a partition $p_{\alpha} T$ on the (number of) edges in T. Adding β and γ gives the partition triple $p T=\left(p_{\alpha} T, p_{\beta} T, p_{\gamma} T\right)$ of T.

Theorem The partition triple $p T$ of a unbiased dessin T is Γ-invariant. Proof This is the passport invariant of Lando and Zvonkin.

Corollary Attaching to each node T of \mathcal{L}^{\prime} the partition triple $p T$ provides a Γ-invariant decoration of \mathcal{L}^{\prime}.

Decorating \mathcal{L}^{\prime} to obtain \mathcal{L} - maps (tricky so just \mathcal{L}_{d})

Definition $\quad T_{d}$ is the 'universal at most d-edged biased dessin'.
T_{d} is the smallest T such that $T \rightarrow R$ for any R with $\leq d$ edges. It is the join of all biased dessin with $\leq d$ edges. (Equivalent to Guillot's H_{d} ?)
Definition Let C be a cycle on T_{d}. For $T_{d} \rightarrow R$ let C_{R} be image of C, and $m_{C}(R)$ the number of edges. Then m_{C} is the multiplicity function.

Definition Set $\mathcal{L}_{d}^{\prime}=\left\{R \mid T_{d} \rightarrow R\right\}$. (It is the domain of m_{C}.)
Definition The decoration \mathcal{L}_{d} of \mathcal{L}_{d}^{\prime} is the formal sum (or multiset) of the m_{C}, over all cycles C on T_{d} (for α, β and γ separately).

Theorem The decoration of \mathcal{L}_{d}^{\prime} is Γ-invariant.
Proof By design, can be done using only local geometry of Belyi pairs. \square
Remark We can decorate \mathcal{L}^{\prime} in a way that restricts to \mathcal{L}_{d}. (Exercise) Problem Is the restriction map $\operatorname{Aut}\left(\mathcal{L}_{d+1}\right) \rightarrow \operatorname{Aut}\left(\mathcal{L}_{d}\right)$ surjective? Problem Is \mathcal{L}_{d} generated by the biased dessin with $\leq d$ edges?

Decorating \mathcal{L}^{\prime} to obtain \mathcal{L} - maps (this is tricky)

This slide attaches a partition map to each map $T \rightarrow R$ in \mathcal{L}^{\prime}. Up to equivalence, the system of partition maps is Γ-invariant.

Let p_{1} and p_{2} be $p_{\alpha} T$ and $p_{\alpha} R$ respectively, thought of as non-increasing maps $\mathbb{N}_{+} \rightarrow \mathbb{N}$. Number the α-cycles of T with initial portion of \mathbb{N}_{+}, etc.

Each cycle of T maps to a cycle of R (because $T \rightarrow R$ and α commute). Hence, given a numbering of cycles, we get a map $p_{\alpha, R \rightarrow T}: \mathbb{N}_{+}$to \mathbb{N}_{+}.

This partition map, eventually trivial, is unique up to permutations of \mathbb{N}_{+} that preserve $p_{i}: \mathbb{N}_{+} \rightarrow \mathbb{N}$. This defines equivalence of partition maps.

Definition \mathcal{L} is the lattice \mathcal{L}^{\prime} of biased dessins, decorated with $p_{\alpha} T$ etc at each node, and the induced $p_{\alpha, T \rightarrow R}$ etc at each map $T \rightarrow R$.

Theorem The system of partition maps $p_{\alpha, T \rightarrow R}$ etc are Γ-invariant (up to renumbering of cycles equivalence).
Proof By design, can be done using only local geometry of Belyi pairs. \square Corollary \mathcal{L} is Γ-invariant (up to equivalence).

Technical summary (and thank you for your attention)

We introduced the decorated lattice \mathcal{L} of biased dessins.
A dessin is an irreducible pair (α, β) of permutations (on the same finite set of edges). The Cartesian product of two dessins is only a pair of permutations. A biased dessin is a dessin with a chosen edge.
If R and S are biased dessins then the Cartesian product $R \times S$ has a distinguished component, denoted by $R \vee S$, which is also a biased dessin. This induces a lattice \mathcal{L}^{\prime} with nodes the biased dessins.
The permutation α of a dessin T induces a partition $p_{\alpha} T$ of the (number of) edges of T, and similarly for β and $\gamma=(\alpha \beta)^{-1}$.
Each node T of \mathcal{L}^{\prime} we decorate with $p_{\alpha} T, p_{\beta} T, p_{\gamma} T$. Each $T \rightarrow R$ (i.e. $T=T \vee R$) we decorate with partition maps $p_{\alpha, T \rightarrow R}$ (tricky).

This defines \mathcal{L}. Its automorphism group contains the absolute Galois group (easy, given known hard results). Are the two groups equal?

