Extension of the classification of high rank

polytopes

M. Elisa Fernandes

Universidade de Aveiro, Portugal
joint work with
Dimitri Leemans and Mark Mixer
SIGMAP 14

r-polytope and string C-groups

Extension of the classification of high rank polytopes
A string C-group is a group generated by involutions

$$
\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle
$$

satisfying (1) and (2).

r-polytope and string C-groups

Extension of the classification of high rank polytopes
A string C-group is a group generated by involutions

$$
\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle
$$

satisfying (1) and (2).
(1) The commuting property

$$
|i-j|>1 \Rightarrow\left(\rho_{i} \rho_{j}\right)^{2}=1
$$

r-polytope and string C-groups

Extension of the classification of high rank polytopes
A string C-group is a group generated by involutions

$$
\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle
$$

satisfying (1) and (2).
(1) The commuting property

$$
|i-j|>1 \Rightarrow\left(\rho_{i} \rho_{j}\right)^{2}=1
$$

(2) The intersection condition

$$
\left\langle\rho_{j} \mid j \in J\right\rangle \cap\left\langle\rho_{j} \mid j \in K\right\rangle=\left\langle\rho_{j} \mid j \in J \cap K\right\rangle, \quad J, K \subseteq\{0, \ldots, r-1\} ;
$$

r-polytope and string C-groups

Extension of the classification of high rank polytopes
A string C-group is a group generated by involutions

$$
\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle
$$

satisfying (1) and (2).
(1) The commuting property

$$
|i-j|>1 \Rightarrow\left(\rho_{i} \rho_{j}\right)^{2}=1
$$

(2) The intersection condition

$$
\left\langle\rho_{j} \mid j \in J\right\rangle \cap\left\langle\rho_{j} \mid j \in K\right\rangle=\left\langle\rho_{j} \mid j \in J \cap K\right\rangle, \quad J, K \subseteq\{0, \ldots, r-1\}
$$

The type is $\left\{p_{1}, \ldots, p_{r-1}\right\}$ where p_{i} is the order of $\rho_{i-1} \rho_{i}, i \in\{1, \ldots, r-1\}$.

r-polytope and string C-groups

Extension of the classification of high rank polytopes
A string C-group is a group generated by involutions

$$
\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle
$$

satisfying (1) and (2).
(1) The commuting property

$$
|i-j|>1 \Rightarrow\left(\rho_{i} \rho_{j}\right)^{2}=1
$$

(2) The intersection condition

$$
\left\langle\rho_{j} \mid j \in J\right\rangle \cap\left\langle\rho_{j} \mid j \in K\right\rangle=\left\langle\rho_{j} \mid j \in J \cap K\right\rangle, \quad J, K \subseteq\{0, \ldots, r-1\} ;
$$

The type is $\left\{p_{1}, \ldots, p_{r-1}\right\}$ where p_{i} is the order of $\rho_{i-1} \rho_{i}, i \in\{1, \ldots, r-1\}$.
A string C-group has connected Coxeter diagram (CD) if $p_{i} \neq 2, i \in\{1, \ldots, r-1\}$

r-polytope and string C-groups

Extension of the classification of high rank polytopes
A string C-group is a group generated by involutions

$$
\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle
$$

satisfying (1) and (2).
(1) The commuting property

$$
|i-j|>1 \Rightarrow\left(\rho_{i} \rho_{j}\right)^{2}=1
$$

(2) The intersection condition

$$
\left\langle\rho_{j} \mid j \in J\right\rangle \cap\left\langle\rho_{j} \mid j \in K\right\rangle=\left\langle\rho_{j} \mid j \in J \cap K\right\rangle, \quad J, K \subseteq\{0, \ldots, r-1\} ;
$$

The type is $\left\{p_{1}, \ldots, p_{r-1}\right\}$ where p_{i} is the order of $\rho_{i-1} \rho_{i}, i \in\{1, \ldots, r-1\}$.
A string C-group has connected Coxeter diagram (CD) if $p_{i} \neq 2, i \in\{1, \ldots, r-1\}$

The dual of a string C-group is obtained by reversing the order of the generators.

r-polytope and string C-groups

Extension of the classification of high rank polytopes
A string C-group is a group generated by involutions

$$
\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle
$$

satisfying (1) and (2).
(1) The commuting property

$$
|i-j|>1 \Rightarrow\left(\rho_{i} \rho_{j}\right)^{2}=1
$$

(2) The intersection condition

$$
\left\langle\rho_{j} \mid j \in J\right\rangle \cap\left\langle\rho_{j} \mid j \in K\right\rangle=\left\langle\rho_{j} \mid j \in J \cap K\right\rangle, \quad J, K \subseteq\{0, \ldots, r-1\} ;
$$

The type is $\left\{p_{1}, \ldots, p_{r-1}\right\}$ where p_{i} is the order of $\rho_{i-1} \rho_{i}, i \in\{1, \ldots, r-1\}$.
A string C-group has connected Coxeter diagram (CD) if $p_{i} \neq 2, i \in\{1, \ldots, r-1\}$

The dual of a string C-group is obtained by reversing the order of the generators.
r-polytope $:=$ string C-group of rank r with CD.

Highest rank of polytopes for primitive groups
Extension of the classification of high rank polytopes

Highest rank of polytopes for primitive groups

Extension of the classification of high rank polytopes
[2000; Whiston] The size of an independent generating set is at most $n-1$. Moreover, an independent set of size $n-1$ generates S_{n}.

Highest rank of polytopes for primitive groups

Extension of the classification of high rank polytopes
[2000; Whiston] The size of an independent generating set is at most $n-1$. Moreover, an independent set of size $n-1$ generates S_{n}.
[2011; Fernandes, Leemans, Mixer]

- For every $n \geq 12$ there exist polytope for A_{n} with rank $\left\lfloor\frac{n-1}{2}\right\rfloor$.

Conjecture: The highest rank of a polytope for A_{n} is $\left\lfloor\frac{n-1}{2}\right\rfloor$.

Highest rank of polytopes for primitive groups

Extension of the classification of high rank polytopes
[2000; Whiston] The size of an independent generating set is at most $n-1$. Moreover, an independent set of size $n-1$ generates S_{n}.
[2011; Fernandes, Leemans, Mixer]

- For every $n \geq 12$ there exist polytope for A_{n} with rank $\left\lfloor\frac{n-1}{2}\right\rfloor$.

Conjecture: The highest rank of a polytope for A_{n} is $\left\lfloor\frac{n-1}{2}\right\rfloor$.
[2002; Maróti] The size of a primitive group of degree n which is not A_{n} nor S_{n} is at most $50 n^{\sqrt{n}}$.

Highest rank of polytopes for primitive groups

Extension of the classification of high rank polytopes
[2000; Whiston] The size of an independent generating set is at most $n-1$. Moreover, an independent set of size $n-1$ generates S_{n}.

[2011; Fernandes, Leemans, Mixer]

- For every $n \geq 12$ there exist polytope for A_{n} with rank $\left\lfloor\frac{n-1}{2}\right\rfloor$.

Conjecture: The highest rank of a polytope for A_{n} is $\left\lfloor\frac{n-1}{2}\right\rfloor$.
[2002; Maróti] The size of a primitive group of degree n which is not A_{n} nor S_{n} is at most $50 n^{\sqrt{n}}$.
[2013; Conder] The size of a r-polytope is at least $\frac{4^{r}}{2}$ when $r>9$.

Highest rank of polytopes for primitive groups

Extension of the classification of high rank polytopes
[2000; Whiston] The size of an independent generating set is at most $n-1$. Moreover, an independent set of size $n-1$ generates S_{n}.

[2011; Fernandes, Leemans, Mixer]

- For every $n \geq 12$ there exist polytope for A_{n} with rank $\left\lfloor\frac{n-1}{2}\right\rfloor$.

Conjecture: The highest rank of a polytope for A_{n} is $\left\lfloor\frac{n-1}{2}\right\rfloor$.
[2002; Maróti] The size of a primitive group of degree n which is not A_{n} nor S_{n} is at most $50 n^{\sqrt{n}}$.
[2013; Conder] The size of a r-polytope is at least $\frac{4^{r}}{2}$ when $r>9$.
For $r>9$ we have, $r \leq \log _{4}\left(100 n^{\sqrt{n}}\right)$.

Highest rank of polytopes for primitive groups

Extension of the classification of high rank polytopes
[2000; Whiston] The size of an independent generating set is at most $n-1$. Moreover, an independent set of size $n-1$ generates S_{n}.

[2011; Fernandes, Leemans, Mixer]

- For every $n \geq 12$ there exist polytope for A_{n} with rank $\left\lfloor\frac{n-1}{2}\right\rfloor$.

Conjecture: The highest rank of a polytope for A_{n} is $\left\lfloor\frac{n-1}{2}\right\rfloor$.
[2002; Maróti] The size of a primitive group of degree n which is not A_{n} nor S_{n} is at most $50 n^{\sqrt{n}}$.
[2013; Conder] The size of a r-polytope is at least $\frac{4^{r}}{2}$ when $r>9$.
For $r>9$ we have, $r \leq \log _{4}\left(100 n^{\sqrt{n}}\right)$.
[FLM] Let r be the rank of a transitive primitive polytope of degree $n \geq 12$, which is neither A_{n} nor S_{n}.

$$
r \leq \frac{n-3}{2}
$$

Extension of the classification of high rank polytopes

Highest rank of string C-group for imprimitive groups

Extension of the classification of high rank polytopes
[2000; Whiston] For $n \geq 7$, an independent generating set for a transitive imprimitive group of degree n has size at most $n-3$.

Highest rank of string C-group for imprimitive groups

Extension of the classification of high rank polytopes
[2000; Whiston] For $n \geq 7$, an independent generating set for a transitive imprimitive group of degree n has size at most $n-3$.
[FLM] Let r be the rank of a transitive imprimitive string C-group .

$$
r \leq m+k+1,
$$

where k is the size of a block and m is the number of blocks for an embedding of the string C-group into $S_{k} \ell S_{m}$ having a maximal k.

Highest rank of string C-group for imprimitive groups

Extension of the classification of high rank polytopes

[2000; Whiston] For $n \geq 7$, an independent generating set for a transitive imprimitive group of degree n has size at most $n-3$.
[FLM] Let r be the rank of a transitive imprimitive string C-group .

$$
r \leq m+k+1,
$$

where k is the size of a block and m is the number of blocks for an embedding of the string C-group into $S_{k} \ell S_{m}$ having a maximal k.

We assume Γ is embedded into $S_{k} \swarrow S_{m}$ with k being the maximal.
L - generators that independently generate the block action;
C - generators commuting with every element of L;
R - remaining generators of Γ.

Highest rank of string C-group for imprimitive groups

Extension of the classification of high rank polytopes

[2000; Whiston] For $n \geq 7$, an independent generating set for a transitive imprimitive group of degree n has size at most $n-3$.
[FLM] Let r be the rank of a transitive imprimitive string C-group .

$$
r \leq m+k+1
$$

where k is the size of a block and m is the number of blocks for an embedding of the string C-group into $S_{k} \backslash S_{m}$ having a maximal k.

We assume Γ is embedded into $S_{k} \swarrow S_{m}$ with k being the maximal.
L - generators that independently generate the block action;
C - generators commuting with every element of L;
R - remaining generators of Γ.

- $|L| \leq m-1$ and $|L|=m-1 \Rightarrow|R| \leq 2$

Highest rank of string C-group for imprimitive groups

Extension of the classification of high rank polytopes

[2000; Whiston] For $n \geq 7$, an independent generating set for a transitive imprimitive group of degree n has size at most $n-3$.
[FLM] Let r be the rank of a transitive imprimitive string C-group .

$$
r \leq m+k+1
$$

where k is the size of a block and m is the number of blocks for an embedding of the string C-group into $S_{k} \ell S_{m}$ having a maximal k.

We assume Γ is embedded into $S_{k} \swarrow S_{m}$ with k being the maximal.
L - generators that independently generate the block action;
C - generators commuting with every element of L;
R - remaining generators of Γ.

- $|L| \leq m-1$ and $|L|=m-1 \Rightarrow|R| \leq 2$
- $|C| \leq k-1$

Highest rank of string C-group for imprimitive groups

Extension of the classification of high rank polytopes

[2000; Whiston] For $n \geq 7$, an independent generating set for a transitive imprimitive group of degree n has size at most $n-3$.
[FLM] Let r be the rank of a transitive imprimitive string C-group .

$$
r \leq m+k+1
$$

where k is the size of a block and m is the number of blocks for an embedding of the string C-group into $S_{k} \ell S_{m}$ having a maximal k.

We assume Γ is embedded into $S_{k} \swarrow S_{m}$ with k being the maximal.
L - generators that independently generate the block action;
C - generators commuting with every element of L;
R - remaining generators of Γ.

- $|L| \leq m-1$ and $|L|=m-1 \Rightarrow|R| \leq 2$
- $|C| \leq k-1$
- $|R| \leq 4$

Polytopes for S_{n}

Extension of the classification of high rank polytopes
Number of polytopes, up to duality, for $S_{n}(5 \leq n \leq 14)$

$\mathbf{G} \backslash \mathbf{r}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
S_{5}	4	$\mathbf{1}$	0	0	0	0	0	0	0	0	0
S_{6}	2	4	$\mathbf{1}$	0	0	0	0	0	0	0	0
S_{7}	35	7	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0	0
S_{8}	68	36	11	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0
S_{9}	129	37	7	7	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0
S_{10}	413	203	52	13	7	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0
S_{11}	1221	189	43	25	9	7	$\mathbf{1}$	$\mathbf{1}$	0	0	0
S_{12}	3346	940	183	75	40	9	7	$\mathbf{1}$	$\mathbf{1}$	0	0
S_{13}	7163	863	171	123	41	35	$\mathbf{9}$	7	$\mathbf{1}$	$\mathbf{1}$	0
S_{14}	23126	3945	978	303	163	54	35	$\mathbf{9}$	7	$\mathbf{1}$	$\mathbf{1}$

Polytopes of rank $r \geq n-4$

Extension of the classification of high rank polytopes

Polytopes of rank $r \geq n-4$

Extension of the classification of high rank polytopes

[2011; FL]

- For $n \geq 5$, the n-simplex is the unique ($n-1$)-polytope for S_{n}.
- For $n \geq 7$, there is, up to duality, a unique ($n-2$)-polytope S_{n}.
- There exists at least one r-polytope for each rank $r \in\{3, \ldots, n-1\}$ for S_{n}.

Polytopes of rank $r \geq n-4$

Extension of the classification of high rank polytopes

[2011; FL]

- For $n \geq 5$, the n-simplex is the unique $(n-1)$-polytope for S_{n}.
- For $n \geq 7$, there is, up to duality, a unique ($n-2$)-polytope S_{n}.
- There exists at least one r-polytope for each rank $r \in\{3, \ldots, n-1\}$ for S_{n}.
[FML]

Polytopes of rank $r \geq n-4$

Extension of the classification of high rank polytopes

[2011; FL]

- For $n \geq 5$, the n-simplex is the unique $(n-1)$-polytope for S_{n}.
- For $n \geq 7$, there is, up to duality, a unique ($n-2$)-polytope S_{n}.
- There exists at least one r-polytope for each $\operatorname{rank} r \in\{3, \ldots, n-1\}$ for S_{n}.

[FML]

- For $n \geq 9$, there are, up to duality, 7 polytopes of rank $n-3$ for S_{n}.

Polytopes of rank $r \geq n-4$

Extension of the classification of high rank polytopes

[2011; FL]

- For $n \geq 5$, the n-simplex is the unique $(n-1)$-polytope for S_{n}.
- For $n \geq 7$, there is, up to duality, a unique ($n-2$)-polytope S_{n}.
- There exists at least one r-polytope for each rank $r \in\{3, \ldots, n-1\}$ for S_{n}.

[FML]

- For $n \geq 9$, there are, up to duality, 7 polytopes of rank $n-3$ for S_{n}.
- For $n \geq 11$, there are, up to duality, 9 polytopes of rank $n-4$ for S_{n}.

Polytopes of rank $r \geq n-4$

Extension of the classification of high rank polytopes

[2011; FL]

- For $n \geq 5$, the n-simplex is the unique $(n-1)$-polytope for S_{n}.
- For $n \geq 7$, there is, up to duality, a unique ($n-2$)-polytope S_{n}.
- There exists at least one r-polytope for each $\operatorname{rank} r \in\{3, \ldots, n-1\}$ for S_{n}.

[FML]

- For $n \geq 9$, there are, up to duality, 7 polytopes of rank $n-3$ for S_{n}.
- For $n \geq 11$, there are, up to duality, 9 polytopes of rank $n-4$ for S_{n}.
- If Γ is a r-polytope for a transitive group of degree n with $r \geq n-4$ and $n \geq 11$, then

$$
\Gamma \cong S_{n}
$$

Parabolic subgroups of high rank polytopes

Extension of the classification of high rank polytopes

Parabolic subgroups of high rank polytopes

Extension of the classification of high rank polytopes
Let $\Gamma=\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle$ be a r-polytope for a transitive permutation group of degree $n \geq 15$ with $r \geq n-4$.

Parabolic subgroups of high rank polytopes

Extension of the classification of high rank polytopes
Let $\Gamma=\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle$ be a r-polytope for a transitive permutation group of degree $n \geq 15$ with $r \geq n-4$.

The parabolic subgroup Γ_{i} is the group generated by $\left\{\rho_{j} \mid j \neq i\right\}$.

Parabolic subgroups of high rank polytopes

Extension of the classification of high rank polytopes
Let $\Gamma=\left\langle\rho_{0}, \ldots, \rho_{r-1}\right\rangle$ be a r-polytope for a transitive permutation group of degree $n \geq 15$ with $r \geq n-4$.

The parabolic subgroup Γ_{i} is the group generated by $\left\{\rho_{j} \mid j \neq i\right\}$.

All parabolic subgroups are intransitive.

CPR graphs

Extension of the classification of high rank polytopes

CPR graphs

Extension of the classification of high rank polytopes

- We construct all possible permutation graphs for Γ when all Γ_{i} are intransitive.

CPR graphs

Extension of the classification of high rank polytopes

- We construct all possible permutation graphs for Γ when all Γ_{i} are intransitive.
[2008; Pellicer] A CPR graph is a permutation representation of a permutation string C-group .

CPR graphs

Extension of the classification of high rank polytopes

- We construct all possible permutation graphs for Γ when all Γ_{i} are intransitive.
[2008; Pellicer] A CPR graph is a permutation representation of a permutation string C-group .

Example: CPR graph of 4-polytope of type $(10,3,3)$ for A_{9}

$$
\rho_{0}=(13)(45)(67)(89) \quad \rho_{1}=(24)(35) \quad \rho_{2}=(46)(57) \quad \rho_{3}=(68)(79) .
$$

CPR graphs

Extension of the classification of high rank polytopes

- We construct all possible permutation graphs for Γ when all Γ_{i} are intransitive.
[2008; Pellicer] A CPR graph is a permutation representation of a permutation string C-group .

Example: CPR graph of 4-polytope of type $(10,3,3)$ for A_{9}

A CPR graphs has the following properties:

CPR graphs

Extension of the classification of high rank polytopes

- We construct all possible permutation graphs for Γ when all Γ_{i} are intransitive.
[2008; Pellicer] A CPR graph is a permutation representation of a permutation string C-group .

Example: CPR graph of 4-polytope of type $(10,3,3)$ for A_{9}

$$
\begin{gathered}
\rho_{0}=(13)(45)(67)(89) \quad \rho_{1}=(24)(35) \quad \rho_{2}=(46)(57) \quad \rho_{3}=(68)(79) . \\
\left.(1) \frac{1}{0}(3)-(5)-7\right)
\end{gathered}
$$

A CPR graphs has the following properties:
(1) The graph induced by the i-edges is a matching;

CPR graphs

Extension of the classification of high rank polytopes

- We construct all possible permutation graphs for Γ when all Γ_{i} are intransitive.
[2008; Pellicer] A CPR graph is a permutation representation of a permutation string C-group .

Example: CPR graph of 4-polytope of type $(10,3,3)$ for A_{9}

A CPR graphs has the following properties:
(1) The graph induced by the i-edges is a matching;
(2) If $|i-j| \geq 2$, then the i and j-edges are either parallel edges, double edges or form an alternating i, j-squares.

CPR graphs

- We construct all possible permutation graphs for Γ when all Γ_{i} are intransitive.
[2008; Pellicer] A CPR graph is a permutation representation of a permutation string C-group .

Example: CPR graph of 4-polytope of type $(10,3,3)$ for A_{9}

A CPR graphs has the following properties:
(1) The graph induced by the i-edges is a matching;
(2) If $|i-j| \geq 2$, then the i and j-edges are either parallel edges, double edges or form an alternating i, j-squares.

A CPR graph is linear if and only if adjacent edges have consecutive labels.

Fracture graph

Extension of the classification of high rank polytopes

Fracture graph

Extension of the classification of high rank polytopes
Let Γ_{i} be intransitive for all $i \in\{0, \ldots, r-1\}$ and \mathcal{G} be its CPR graph.

Fracture graph

Extension of the classification of high rank polytopes
Let Γ_{i} be intransitive for all $i \in\{0, \ldots, r-1\}$ and \mathcal{G} be its CPR graph.
A fracture graph \mathcal{F} of Γ is a graph with n vertices and with one edge of each label, as follows:
\mathcal{F} has an i-edges $\{a, b\}$ if a and b are in different Γ_{i}-orbits.

Fracture graph

Extension of the classification of high rank polytopes

Let Γ_{i} be intransitive for all $i \in\{0, \ldots, r-1\}$ and \mathcal{G} be its CPR graph.
A fracture graph \mathcal{F} of Γ is a graph with n vertices and with one edge of each label, as follows:
\mathcal{F} has an i-edges $\{a, b\}$ if a and b are in different Γ_{i}-orbits.
Any fracture graph of \mathcal{G} has the following properties:

Fracture graph

Extension of the classification of high rank polytopes

Let Γ_{i} be intransitive for all $i \in\{0, \ldots, r-1\}$ and \mathcal{G} be its CPR graph.
A fracture graph \mathcal{F} of Γ is a graph with n vertices and with one edge of each label, as follows:
\mathcal{F} has an i-edges $\{a, b\}$ if a and b are in different Γ_{i}-orbits.
Any fracture graph of \mathcal{G} has the following properties:

- A fracture graph has no cycles.

a and b are in the same Γ_{i}-orbit. Contradition!!!

Fracture graph

Extension of the classification of high rank polytopes

Let Γ_{i} be intransitive for all $i \in\{0, \ldots, r-1\}$ and \mathcal{G} be its CPR graph.
A fracture graph \mathcal{F} of Γ is a graph with n vertices and with one edge of each label, as follows:
\mathcal{F} has an i-edges $\{a, b\}$ if a and b are in different Γ_{i}-orbits.
Any fracture graph of \mathcal{G} has the following properties:

- A fracture graph has no cycles.

a and b are in the same Γ_{i}-orbit. Contradition!!!
- A fracture graph has c connected components if and only if $r=n-c$.

Fracture graph

Extension of the classification of high rank polytopes

Let Γ_{i} be intransitive for all $i \in\{0, \ldots, r-1\}$ and \mathcal{G} be its CPR graph.
A fracture graph \mathcal{F} of Γ is a graph with n vertices and with one edge of each label, as follows:
\mathcal{F} has an i-edges $\{a, b\}$ if a and b are in different Γ_{i}-orbits.
Any fracture graph of \mathcal{G} has the following properties:

- A fracture graph has no cycles.

a and b are in the same Γ_{i}-orbit. Contradition!!!
- A fracture graph has c connected components if and only if $r=n-c$.
- If \mathcal{G} has an alternating square then at least two vertices of the square are in different components of any fracture graph.

Fracture graphs of polytopes of rank $\geq n-4$
Extension of the classification of high rank polytopes

Fracture graphs of polytopes of rank $\geq n-4$

Extension of the classification of high rank polytopes
For $r=n-1$, a fracture graph of \mathcal{G} has only one component and is linear. There is only one possibility, corresponding to the CPR-graph of the ($n-1$)-simplex.

Fracture graphs of polytopes of rank $\geq n-4$

Extension of the classification of high rank polytopes

For $r=n-1$, a fracture graph of \mathcal{G} has only one component and is linear. There is only one possibility, corresponding to the CPR-graph of the ($n-1$)-simplex.

For $r=n-2$, a fracture graph of \mathcal{G} has two components and is linear. Up to duality, there are two possibilities for \mathcal{F} corresponding to unique possibility for \mathcal{G} :

Fracture graphs of polytopes of rank $\geq n-4$

Extension of the classification of high rank polytopes

For $r=n-1$, a fracture graph of \mathcal{G} has only one component and is linear. There is only one possibility, corresponding to the CPR-graph of the ($n-1$)-simplex.

For $r=n-2$, a fracture graph of \mathcal{G} has two components and is linear. Up to duality, there are two possibilities for \mathcal{F} corresponding to unique possibility for \mathcal{G} :

For $r=n-3$ or $n-4$:

Fracture graphs of polytopes of rank $\geq n-4$

Extension of the classification of high rank polytopes

For $r=n-1$, a fracture graph of \mathcal{G} has only one component and is linear. There is only one possibility, corresponding to the CPR-graph of the ($n-1$)-simplex.

For $r=n-2$, a fracture graph of \mathcal{G} has two components and is linear. Up to duality, there are two possibilities for \mathcal{F} corresponding to unique possibility for \mathcal{G} :

For $r=n-3$ or $n-4$:

- A fracture graph of \mathcal{G} has either 3 or 4 components, resp..

Fracture graphs of polytopes of rank $\geq n-4$

Extension of the classification of high rank polytopes

For $r=n-1$, a fracture graph of \mathcal{G} has only one component and is linear. There is only one possibility, corresponding to the CPR-graph of the ($n-1$)-simplex.

For $r=n-2$, a fracture graph of \mathcal{G} has two components and is linear. Up to duality, there are two possibilities for \mathcal{F} corresponding to unique possibility for \mathcal{G} :

For $r=n-3$ or $n-4$:

- A fracture graph of \mathcal{G} has either 3 or 4 components, resp..
- A fracture graph of \mathcal{G} is linear or has exactly one vertex of degree 3 .

Fracture graphs of polytopes of rank $\geq n-4$

Extension of the classification of high rank polytopes

For $r=n-1$, a fracture graph of \mathcal{G} has only one component and is linear. There is only one possibility, corresponding to the CPR-graph of the ($n-1$)-simplex.

For $r=n-2$, a fracture graph of \mathcal{G} has two components and is linear. Up to duality, there are two possibilities for \mathcal{F} corresponding to unique possibility for \mathcal{G} :

For $r=n-3$ or $n-4$:

- A fracture graph of \mathcal{G} has either 3 or 4 components, resp..
- A fracture graph of \mathcal{G} is linear or has exactly one vertex of degree 3 .
- We list all possibilities of connecting the 3 (or 4) components of \mathcal{F} and we find all possibilities for \mathcal{G}.

Fracture graphs of polytopes of rank $\geq n-4$

Extension of the classification of high rank polytopes

For $r=n-1$, a fracture graph of \mathcal{G} has only one component and is linear. There is only one possibility, corresponding to the CPR-graph of the ($n-1$)-simplex.

For $r=n-2$, a fracture graph of \mathcal{G} has two components and is linear. Up to duality, there are two possibilities for \mathcal{F} corresponding to unique possibility for \mathcal{G} :

For $r=n-3$ or $n-4$:

- A fracture graph of \mathcal{G} has either 3 or 4 components, resp..
- A fracture graph of \mathcal{G} is linear or has exactly one vertex of degree 3 .
- We list all possibilities of connecting the 3 (or 4) components of \mathcal{F} and we find all possibilities for \mathcal{G}.
- Not all string groups generated by involution obtained are string C-groups .

case $r=n-3$

Extension of the classification of high rank polytopes
case $r=n-3$
Extension of the classification of high rank polytopes
We get the following possibilities for \mathcal{G} :
$(1) \bigcirc$
case $r=n-3$
Extension of the classification of high rank polytopes
We get the following possibilities for \mathcal{G} :
$(1) \bigcirc$
(1) is not the graph of a string C-group for every $j \in\{0, \ldots, n-7\}$.
case $r=n-3$
Extension of the classification of high rank polytopes
We get the following possibilities for \mathcal{G} :
$(1) \bigcirc$
(1) is not the graph of a string C-group for every $j \in\{0, \ldots, n-7\}$.
(2) is a permutation graph of a string C-group if and only if $j=0$.
case $r=n-3$
Extension of the classification of high rank polytopes
We get the following possibilities for \mathcal{G} :
(1)
(1) is not the graph of a string C-group for every $j \in\{0, \ldots, n-7\}$.
(2) is a permutation graph of a string C-group if and only if $j=0$.

The remaining graphs are graphs of string C-groups Γ and $\Gamma \cong S_{n}$.

The $7(n-3)$-polytopes and the $9(n-4)$-polytopes
Extension of the classification of high rank polytopes

