
Extension of the classification of high rank

polytopes

M. Elisa Fernandes

Universidade de Aveiro, Portugal

joint work with

Dimitri Leemans and Mark Mixer

SIGMAP 14



Extension of the classification of high rank polytopes

r-polytope and string C-groups

1©2 3 4 5 6 7 8 9 10 11



Extension of the classification of high rank polytopes

r-polytope and string C-groups

A string C-group is a group generated by involutions

〈ρ0, . . . , ρr−1〉

satisfying (1) and (2).

1©2 3 4 5 6 7 8 9 10 11



Extension of the classification of high rank polytopes

r-polytope and string C-groups

A string C-group is a group generated by involutions

〈ρ0, . . . , ρr−1〉

satisfying (1) and (2).

(1) The commuting property

|i− j| > 1⇒ (ρiρj)
2 = 1

1©2 3 4 5 6 7 8 9 10 11



Extension of the classification of high rank polytopes

r-polytope and string C-groups

A string C-group is a group generated by involutions

〈ρ0, . . . , ρr−1〉

satisfying (1) and (2).

(1) The commuting property

|i− j| > 1⇒ (ρiρj)
2 = 1

(2) The intersection condition

〈ρj | j ∈ J〉 ∩ 〈ρj | j ∈ K〉 = 〈ρj | j ∈ J ∩K〉, J, K ⊆ {0, ..., r − 1};

1©2 3 4 5 6 7 8 9 10 11



Extension of the classification of high rank polytopes

r-polytope and string C-groups

A string C-group is a group generated by involutions

〈ρ0, . . . , ρr−1〉

satisfying (1) and (2).

(1) The commuting property

|i− j| > 1⇒ (ρiρj)
2 = 1

(2) The intersection condition

〈ρj | j ∈ J〉 ∩ 〈ρj | j ∈ K〉 = 〈ρj | j ∈ J ∩K〉, J, K ⊆ {0, ..., r − 1};

The type is {p1, . . . , pr−1} where pi is the order of ρi−1ρi, i ∈ {1, . . . , r − 1}.

1©2 3 4 5 6 7 8 9 10 11



Extension of the classification of high rank polytopes

r-polytope and string C-groups

A string C-group is a group generated by involutions

〈ρ0, . . . , ρr−1〉

satisfying (1) and (2).

(1) The commuting property

|i− j| > 1⇒ (ρiρj)
2 = 1

(2) The intersection condition

〈ρj | j ∈ J〉 ∩ 〈ρj | j ∈ K〉 = 〈ρj | j ∈ J ∩K〉, J, K ⊆ {0, ..., r − 1};

The type is {p1, . . . , pr−1} where pi is the order of ρi−1ρi, i ∈ {1, . . . , r − 1}.

A string C-group has connected Coxeter diagram (CD) if
pi 6= 2, i ∈ {1, . . . , r − 1}

1©2 3 4 5 6 7 8 9 10 11



Extension of the classification of high rank polytopes

r-polytope and string C-groups

A string C-group is a group generated by involutions

〈ρ0, . . . , ρr−1〉

satisfying (1) and (2).

(1) The commuting property

|i− j| > 1⇒ (ρiρj)
2 = 1

(2) The intersection condition

〈ρj | j ∈ J〉 ∩ 〈ρj | j ∈ K〉 = 〈ρj | j ∈ J ∩K〉, J, K ⊆ {0, ..., r − 1};

The type is {p1, . . . , pr−1} where pi is the order of ρi−1ρi, i ∈ {1, . . . , r − 1}.

A string C-group has connected Coxeter diagram (CD) if
pi 6= 2, i ∈ {1, . . . , r − 1}

The dual of a string C-group is obtained by reversing the order of the
generators.

1©2 3 4 5 6 7 8 9 10 11



Extension of the classification of high rank polytopes

r-polytope and string C-groups

A string C-group is a group generated by involutions

〈ρ0, . . . , ρr−1〉

satisfying (1) and (2).

(1) The commuting property

|i− j| > 1⇒ (ρiρj)
2 = 1

(2) The intersection condition

〈ρj | j ∈ J〉 ∩ 〈ρj | j ∈ K〉 = 〈ρj | j ∈ J ∩K〉, J, K ⊆ {0, ..., r − 1};

The type is {p1, . . . , pr−1} where pi is the order of ρi−1ρi, i ∈ {1, . . . , r − 1}.

A string C-group has connected Coxeter diagram (CD) if
pi 6= 2, i ∈ {1, . . . , r − 1}

The dual of a string C-group is obtained by reversing the order of the
generators.

r-polytope := string C-group of rank r with CD.
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Extension of the classification of high rank polytopes

Highest rank of polytopes for primitive groups
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Extension of the classification of high rank polytopes

Highest rank of polytopes for primitive groups

[2000; Whiston] The size of an independent generating set is at most n− 1.
Moreover, an independent set of size n− 1 generates Sn.
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Extension of the classification of high rank polytopes

Highest rank of polytopes for primitive groups

[2000; Whiston] The size of an independent generating set is at most n− 1.
Moreover, an independent set of size n− 1 generates Sn.

[2011; Fernandes, Leemans, Mixer ]

• For every n ≥ 12 there exist polytope for An with rank bn−12 c.

Conjecture: The highest rank of a polytope for An is bn−12 c.

[2002; Maróti ] The size of a primitive group of degree n which is not An nor

Sn is at most 50n
√
n.

[2013; Conder ] The size of a r-polytope is at least 4r

2 when r > 9.

For r > 9 we have, r ≤ log4(100n
√
n).

[FLM] Let r be the rank of a transitive primitive polytope of degree n ≥ 12,
which is neither An nor Sn.

r ≤ n− 3

2
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Extension of the classification of high rank polytopes

Highest rank of string C-group for imprimitive groups

[2000; Whiston] For n ≥ 7, an independent generating set for a transitive
imprimitive group of degree n has size at most n− 3.
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Extension of the classification of high rank polytopes

Highest rank of string C-group for imprimitive groups

[2000; Whiston] For n ≥ 7, an independent generating set for a transitive
imprimitive group of degree n has size at most n− 3.

[FLM] Let r be the rank of a transitive imprimitive string C-group .

r ≤ m+ k + 1,

where k is the size of a block and m is the number of blocks for an embedding
of the string C-group into Sk o Sm having a maximal k.
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Highest rank of string C-group for imprimitive groups

[2000; Whiston] For n ≥ 7, an independent generating set for a transitive
imprimitive group of degree n has size at most n− 3.

[FLM] Let r be the rank of a transitive imprimitive string C-group .
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Extension of the classification of high rank polytopes

Highest rank of string C-group for imprimitive groups

[2000; Whiston] For n ≥ 7, an independent generating set for a transitive
imprimitive group of degree n has size at most n− 3.

[FLM] Let r be the rank of a transitive imprimitive string C-group .

r ≤ m+ k + 1,

where k is the size of a block and m is the number of blocks for an embedding
of the string C-group into Sk o Sm having a maximal k.

We assume Γ is embedded into Sk o Sm with k being the maximal.

L- generators that independently generate the block action;

C- generators commuting with every element of L;

R- remaining generators of Γ.

• |L| ≤ m− 1 and |L| = m− 1⇒ |R| ≤ 2

• |C| ≤ k − 1

• |R| ≤ 4
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Extension of the classification of high rank polytopes

Polytopes for Sn

Number of polytopes , up to duality, for Sn (5 ≤ n ≤ 14)

G\r 3 4 5 6 7 8 9 10 11 12 13
S5 4 1 0 0 0 0 0 0 0 0 0
S6 2 4 1 0 0 0 0 0 0 0 0
S7 35 7 1 1 0 0 0 0 0 0 0
S8 68 36 11 1 1 0 0 0 0 0 0
S9 129 37 7 7 1 1 0 0 0 0 0
S10 413 203 52 13 7 1 1 0 0 0 0
S11 1221 189 43 25 9 7 1 1 0 0 0
S12 3346 940 183 75 40 9 7 1 1 0 0
S13 7163 863 171 123 41 35 9 7 1 1 0
S14 23126 3945 978 303 163 54 35 9 7 1 1
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Extension of the classification of high rank polytopes

Polytopes of rank r ≥ n− 4

[2011; FL ]

• For n ≥ 5, the n-simplex is the unique (n− 1)-polytope for Sn.

• For n ≥ 7, there is, up to duality, a unique (n− 2)-polytope Sn.

• There exists at least one r-polytope for each rank r ∈ {3, . . . , n− 1} for Sn.
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• For n ≥ 9, there are, up to duality, 7 polytopes of rank n− 3 for Sn.
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Extension of the classification of high rank polytopes

Polytopes of rank r ≥ n− 4

[2011; FL ]

• For n ≥ 5, the n-simplex is the unique (n− 1)-polytope for Sn.

• For n ≥ 7, there is, up to duality, a unique (n− 2)-polytope Sn.

• There exists at least one r-polytope for each rank r ∈ {3, . . . , n− 1} for Sn.

[FML]

• For n ≥ 9, there are, up to duality, 7 polytopes of rank n− 3 for Sn.

• For n ≥ 11, there are, up to duality, 9 polytopes of rank n− 4 for Sn.

• If Γ is a r-polytope for a transitive group of degree n with r ≥ n− 4 and
n ≥ 11, then

Γ ∼= Sn.
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Extension of the classification of high rank polytopes

Parabolic subgroups of high rank polytopes

Let Γ = 〈ρ0, . . . , ρr−1〉 be a r-polytope for a transitive permutation group of
degree n ≥ 15 with r ≥ n− 4.
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Extension of the classification of high rank polytopes

Parabolic subgroups of high rank polytopes

Let Γ = 〈ρ0, . . . , ρr−1〉 be a r-polytope for a transitive permutation group of
degree n ≥ 15 with r ≥ n− 4.

The parabolic subgroup Γi is the group generated by {ρj | j 6= i}.
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Extension of the classification of high rank polytopes

Parabolic subgroups of high rank polytopes

Let Γ = 〈ρ0, . . . , ρr−1〉 be a r-polytope for a transitive permutation group of
degree n ≥ 15 with r ≥ n− 4.

The parabolic subgroup Γi is the group generated by {ρj | j 6= i}.

All parabolic subgroups are intransitive.
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CPR graphs
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• We construct all possible permutation graphs for Γ when all Γi are
intransitive.
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Extension of the classification of high rank polytopes

CPR graphs

• We construct all possible permutation graphs for Γ when all Γi are
intransitive.

[2008; Pellicer ] A CPR graph is a permutation representation of a
permutation string C-group .

Example: CPR graph of 4-polytope of type (10,3,3) for A9

ρ0 = (13)(45)(67)(89) ρ1 = (24)(35) ρ2 = (46)(57) ρ3 = (68)(79).
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A CPR graphs has the following properties:

(1) The graph induced by the i-edges is a matching;

(2) If |i− j| ≥ 2, then the i and j-edges are either parallel edges, double edges
or form an alternating i, j-squares.
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Extension of the classification of high rank polytopes

CPR graphs

• We construct all possible permutation graphs for Γ when all Γi are
intransitive.

[2008; Pellicer ] A CPR graph is a permutation representation of a
permutation string C-group .

Example: CPR graph of 4-polytope of type (10,3,3) for A9

ρ0 = (13)(45)(67)(89) ρ1 = (24)(35) ρ2 = (46)(57) ρ3 = (68)(79).
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A CPR graphs has the following properties:

(1) The graph induced by the i-edges is a matching;

(2) If |i− j| ≥ 2, then the i and j-edges are either parallel edges, double edges
or form an alternating i, j-squares.

A CPR graph is linear if and only if adjacent edges have consecutive labels.

1 2 3 4 5 6 7©8 9 10 11



Extension of the classification of high rank polytopes

Fracture graph
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Extension of the classification of high rank polytopes

Fracture graph

Let Γi be intransitive for all i ∈ {0, . . . , r − 1} and G be its CPR graph.
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Extension of the classification of high rank polytopes

Fracture graph

Let Γi be intransitive for all i ∈ {0, . . . , r − 1} and G be its CPR graph.

A fracture graph F of Γ is a graph with n vertices and with one edge of
each label, as follows:

F has an i-edges {a, b} if a and b are in different Γi-orbits.
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Fracture graph

Let Γi be intransitive for all i ∈ {0, . . . , r − 1} and G be its CPR graph.

A fracture graph F of Γ is a graph with n vertices and with one edge of
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Any fracture graph of G has the following properties:
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Extension of the classification of high rank polytopes

Fracture graph

Let Γi be intransitive for all i ∈ {0, . . . , r − 1} and G be its CPR graph.

A fracture graph F of Γ is a graph with n vertices and with one edge of
each label, as follows:

F has an i-edges {a, b} if a and b are in different Γi-orbits.

Any fracture graph of G has the following properties:

• A fracture graph has no cycles.

a

b
i

a and b are in the same Γi-orbit. Contradition!!!
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Extension of the classification of high rank polytopes

Fracture graph

Let Γi be intransitive for all i ∈ {0, . . . , r − 1} and G be its CPR graph.

A fracture graph F of Γ is a graph with n vertices and with one edge of
each label, as follows:

F has an i-edges {a, b} if a and b are in different Γi-orbits.

Any fracture graph of G has the following properties:

• A fracture graph has no cycles.

a

b
i

a and b are in the same Γi-orbit. Contradition!!!

• A fracture graph has c connected components if and only if r = n− c.
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Extension of the classification of high rank polytopes

Fracture graph

Let Γi be intransitive for all i ∈ {0, . . . , r − 1} and G be its CPR graph.

A fracture graph F of Γ is a graph with n vertices and with one edge of
each label, as follows:

F has an i-edges {a, b} if a and b are in different Γi-orbits.

Any fracture graph of G has the following properties:

• A fracture graph has no cycles.

a

b
i

a and b are in the same Γi-orbit. Contradition!!!

• A fracture graph has c connected components if and only if r = n− c.

• If G has an alternating square then at least two vertices of the square are in
different components of any fracture graph.
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Extension of the classification of high rank polytopes

Fracture graphs of polytopes of rank ≥ n− 4
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Extension of the classification of high rank polytopes

Fracture graphs of polytopes of rank ≥ n− 4

For r = n− 1, a fracture graph of G has only one component and is linear.
There is only one possibility, corresponding to the CPR-graph of the
(n− 1)-simplex.

0 1 2 3 n−3 n−2
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Extension of the classification of high rank polytopes

Fracture graphs of polytopes of rank ≥ n− 4

For r = n− 1, a fracture graph of G has only one component and is linear.
There is only one possibility, corresponding to the CPR-graph of the
(n− 1)-simplex.

0 1 2 3 n−3 n−2

For r = n− 2, a fracture graph of G has two components and is linear. Up to
duality, there are two possibilities for F corresponding to unique possibility
for G:

1 0 1 2 3 n−4 n−3

1 0 1 2 3 n−4 n−3
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Extension of the classification of high rank polytopes

Fracture graphs of polytopes of rank ≥ n− 4

For r = n− 1, a fracture graph of G has only one component and is linear.
There is only one possibility, corresponding to the CPR-graph of the
(n− 1)-simplex.

0 1 2 3 n−3 n−2

For r = n− 2, a fracture graph of G has two components and is linear. Up to
duality, there are two possibilities for F corresponding to unique possibility
for G:

1 0 1 2 3 n−4 n−3

1 0 1 2 3 n−4 n−3

For r = n− 3 or n− 4:
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Extension of the classification of high rank polytopes

Fracture graphs of polytopes of rank ≥ n− 4

For r = n− 1, a fracture graph of G has only one component and is linear.
There is only one possibility, corresponding to the CPR-graph of the
(n− 1)-simplex.

0 1 2 3 n−3 n−2

For r = n− 2, a fracture graph of G has two components and is linear. Up to
duality, there are two possibilities for F corresponding to unique possibility
for G:

1 0 1 2 3 n−4 n−3

1 0 1 2 3 n−4 n−3

For r = n− 3 or n− 4:

- A fracture graph of G has either 3 or 4 components, resp..
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Extension of the classification of high rank polytopes

Fracture graphs of polytopes of rank ≥ n− 4

For r = n− 1, a fracture graph of G has only one component and is linear.
There is only one possibility, corresponding to the CPR-graph of the
(n− 1)-simplex.

0 1 2 3 n−3 n−2

For r = n− 2, a fracture graph of G has two components and is linear. Up to
duality, there are two possibilities for F corresponding to unique possibility
for G:

1 0 1 2 3 n−4 n−3

1 0 1 2 3 n−4 n−3

For r = n− 3 or n− 4:

- A fracture graph of G has either 3 or 4 components, resp..

- A fracture graph of G is linear or has exactly one vertex of degree 3.
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Extension of the classification of high rank polytopes

Fracture graphs of polytopes of rank ≥ n− 4

For r = n− 1, a fracture graph of G has only one component and is linear.
There is only one possibility, corresponding to the CPR-graph of the
(n− 1)-simplex.

0 1 2 3 n−3 n−2

For r = n− 2, a fracture graph of G has two components and is linear. Up to
duality, there are two possibilities for F corresponding to unique possibility
for G:

1 0 1 2 3 n−4 n−3

1 0 1 2 3 n−4 n−3

For r = n− 3 or n− 4:

- A fracture graph of G has either 3 or 4 components, resp..

- A fracture graph of G is linear or has exactly one vertex of degree 3.

- We list all possibilities of connecting the 3 (or 4) components of F and we
find all possibilities for G.
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Extension of the classification of high rank polytopes

Fracture graphs of polytopes of rank ≥ n− 4

For r = n− 1, a fracture graph of G has only one component and is linear.
There is only one possibility, corresponding to the CPR-graph of the
(n− 1)-simplex.

0 1 2 3 n−3 n−2

For r = n− 2, a fracture graph of G has two components and is linear. Up to
duality, there are two possibilities for F corresponding to unique possibility
for G:

1 0 1 2 3 n−4 n−3

1 0 1 2 3 n−4 n−3

For r = n− 3 or n− 4:

- A fracture graph of G has either 3 or 4 components, resp..

- A fracture graph of G is linear or has exactly one vertex of degree 3.

- We list all possibilities of connecting the 3 (or 4) components of F and we
find all possibilities for G.

- Not all string groups generated by involution obtained are string C-groups .
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Extension of the classification of high rank polytopes

case r = n− 3
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Extension of the classification of high rank polytopes

case r = n− 3

We get the following possibilities for G:

2

0

2

1 2 3 n−4

0

0

2 1

1

2

n−4

0

1 0 n−4 n−5 0 1 0 n−4

2 1 0 n−4 2

0

1 0 n−4

(1) 0 j+1 j+2 j+1 j+2 n−5 n−6
(2) 0 j j+1 j

j+2

j+1 n−4 n−5

j ∈ {0, . . . , n − 7} j ∈ {0, . . . , n − 7}.
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Extension of the classification of high rank polytopes

case r = n− 3

We get the following possibilities for G:

2

0

2

1 2 3 n−4

0

0

2 1

1

2

n−4

0

1 0 n−4 n−5 0 1 0 n−4

2 1 0 n−4 2

0

1 0 n−4

(1) 0 j+1 j+2 j+1 j+2 n−5 n−6
(2) 0 j j+1 j

j+2

j+1 n−4 n−5

j ∈ {0, . . . , n − 7} j ∈ {0, . . . , n − 7}.

(1) is not the graph of a string C-group for every j ∈ {0, . . . , n− 7}.

1 2 3 4 5 6 7 8 9 10© 11



Extension of the classification of high rank polytopes

case r = n− 3

We get the following possibilities for G:

2

0

2

1 2 3 n−4

0

0

2 1

1

2

n−4

0

1 0 n−4 n−5 0 1 0 n−4

2 1 0 n−4 2

0

1 0 n−4

(1) 0 j+1 j+2 j+1 j+2 n−5 n−6
(2) 0 j j+1 j

j+2

j+1 n−4 n−5

j ∈ {0, . . . , n − 7} j ∈ {0, . . . , n − 7}.

(1) is not the graph of a string C-group for every j ∈ {0, . . . , n− 7}.

(2) is a permutation graph of a string C-group if and only if j = 0.
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Extension of the classification of high rank polytopes

case r = n− 3

We get the following possibilities for G:

2

0

2

1 2 3 n−4

0

0

2 1

1

2

n−4

0

1 0 n−4 n−5 0 1 0 n−4

2 1 0 n−4 2

0

1 0 n−4

(1) 0 j+1 j+2 j+1 j+2 n−5 n−6
(2) 0 j j+1 j

j+2

j+1 n−4 n−5

j ∈ {0, . . . , n − 7} j ∈ {0, . . . , n − 7}.

(1) is not the graph of a string C-group for every j ∈ {0, . . . , n− 7}.

(2) is a permutation graph of a string C-group if and only if j = 0.

The remaining graphs are graphs of string C-groups Γ and Γ ∼= Sn.

1 2 3 4 5 6 7 8 9 10© 11



Extension of the classification of high rank polytopes

The 7 (n− 3)-polytopes and the 9 (n− 4)-polytopes

2

0

2

1 2 3 n−4

0

0

2 1

1

2

n−4

0

1 0 n−4 n−5 0 1 0 n−4

2 1 0 n−4 2

0

1 0 n−4

0 1 0

2

1 n−5 n−6

3

0

3

1

3

2 3 4 n−5

0 1

0

2

1

2

n−5 n−6

0

0

2 1

1

2

n−5 n−6

0

0 1 0 n−5 n−6

2 1 0 n−5 n−6 0

2

1 0 n−5 n−6

0 1 2

0

1 n−5 n−6 1 0 1 0 n−5

3 2 1 0 n−5
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