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An (unmixed) Beauville structure for G is a set of pairs of
elements {{x1,y1}, {x2,y2}} C G x G such that

» (x1,y1) = (x2,y2) = G and
> X(x1,y1) NX(x2,y2) = {e}.
If G has a Beauville structure, then G is a Beauville group.

A Beauville group gives a complex surface (a Beauville surface),
roughly speaking, via the quotient (C; x C2)/G where Cy, Cy are
compact Riemann surfaces, genus> 2 and the action is ‘really nice’
(Ci — Ci/ G = P1(C) ramified at 3 points etc).
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These are surfaces of general type;

they are rigid in the sense of admitting no non-trivial
infinitesimal deformations;

their fundamental groups are easily calculated. ..
as are their automorphism groups.

They have uses, for example, the Friedman-Morgan
conjecture; action of Gal(Q/Q) on regular dessins.
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(Beauville, 1979) The group (Z/5Z) x (Z/5Z) acting on the
Fermat curve x® + y® 4+ z° = 0.
Theorem (Catanese '00)

If G is an abelian group, then G is a Beauville group if and only if
G =(Z/nZ) x (Z/nZ) where n > 1 and gcd(n,6)=1.

» Recall that a finite group is nilpotent if and only if it is the
direct product of p-groups (groups of order p" for some prime
p and some r € Z™).

» If G and H are Beauville groups that have coprime order, then
clearly G x H will be a Beauville group.

» The study of nilpotent Beauville groups thus reduces to the
study of Beauville p-groups.

» The above theorem gives infinitely many (non-abelian)
examples if p > 5 - just set n = p".
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» (Bauer, Catanese & Grunewald, '08) two examples of order 28.

> (Fuertes, Gonzélez-Diez & Jaikin-Zapirain, '11) example of
order 2'2 and example of 312.

» (Barker, Boston & F., '12) examples of order p”, n < 5(ish).

» (Barker, Boston, Peyerimhoff & Vdovina, '114) several further
examples (including infinite family of Beauville 2-groups).

» (Stix & Vdovina, '14+) p > 5, (Z/p™Z) : (Z/p™Z) is
Beauville iff m = n. Also discuss use of pro-p groups in this
context.

> (Jones, '14) G is 2-generated of exponent p > 5 = G is
Beauville.

Open Problem
Construct infinitely many Beauville 3-groups!
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Simple examples?

Theorem (Steinberg 1962; Aschbacher & Guralnick, 1984)

Every finite simple group is 2-generated.

» Easy to see that Alt(5) is not a Beauville group.

Theorem (Garion, Larson, Lubotzky; Guralnick, Malle; F.,
Magaard & Parker, '10-'13)

Every finite quasisimple group apart from Alt(5) and SL(2,5) is a
Beauville group.

» Special cases had been settled earlier by various people
(Bauer, Catanese, Grunewald, Fuertes, Jones,
Gonzalez-Diez. . .)
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Real matters

Recall that real structure on a Riemann surface R is an
antiholomorphic map o: R — R such that o o o is the identity (o
is locally ‘like z — Z').

Definition
A Beauville surface S is said to be real if there exists an
antiholomorphic o: § — & such that ¢ o ¢ is the identity.

Definition

A Beauville structure {{x1,y1},{x2,y2}} C G x G of a Beauville
group G is strongly real if there exist automorphisms

@1, 02 € Aut(G) and elements g1, g» € G such that for i = 1,2

gi¢i(xi)gi_1 = xl-land
gidilyi)g, ~ = vy -
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Examples of stongly real Beauville groups

> Every abelian Beauville group is a strongly real Beauville
group.

> As far as | am aware there are no known examples of strongly
real Beauville p-groups!

Open Problem
Construct examples of non-abelian strongly real Beauville p-groups.
» (F. '144) Various further examples
» Sym(n) x Sym(n) for n > 5;
» some groups of the form Alt(n) x --- x Alt(n);
» some almost simple groups.

Conjecture
An almost simple group is a Beauville group if and only if it is a
strongly real Beauville group.



Examples of stongly real Beauville groups

Conjecture (Bauer, Catanese & Grunewald '00; F. '14+)

Every finite simple group apart from Alt(5), M1y and M3 is a
strongly real Beauville group.



Examples of stongly real Beauville groups

Conjecture (Bauer, Catanese & Grunewald '00; F. '14+)
Every finite simple group apart from Alt(5), M1y and M3 is a
strongly real Beauville group.

> (Fuertes & Gonzdlez-Diez, '09) Alt(n) for n > 6 (& Sym(n)
for n > 5)



Examples of stongly real Beauville groups

Conjecture (Bauer, Catanese & Grunewald '00; F. '14+)

Every finite simple group apart from Alt(5), M1y and M3 is a
strongly real Beauville group.

> (Fuertes & Gonzdlez-Diez, '09) Alt(n) for n > 6 (& Sym(n)
for n > 5)
> (Fuertes & Jones, '09) PSL(2,p") (and SL(2,p")) for p" > 5



Examples of stongly real Beauville groups

Conjecture (Bauer, Catanese & Grunewald '00; F. '14+)

Every finite simple group apart from Alt(5), M1y and M3 is a
strongly real Beauville group.

> (Fuertes & Gonzdlez-Diez, '09) Alt(n) for n > 6 (& Sym(n)
for n > 5)

> (Fuertes & Jones, '09) PSL(2,p") (and SL(2,p")) for p" > 5

> (F., '12) M11, M12, J1, M22, .J2,...



Examples of stongly real Beauville groups

Conjecture (Bauer, Catanese & Grunewald '00; F. '14+)

Every finite simple group apart from Alt(5), M1y and M3 is a
strongly real Beauville group.

> (Fuertes & Gonzdlez-Diez, '09) Alt(n) for n > 6 (& Sym(n)
for n > 5)

> (Fuertes & Jones, '09) PSL(2,p") (and SL(2,p")) for p" > 5

> (F., '12) M11, M12, J1, M22, .J2,...

» (F., '14+4) 2By(22*1) for r > 1



Examples of stongly real Beauville groups

Conjecture (Bauer, Catanese & Grunewald '00; F. '14+)

Every finite simple group apart from Alt(5), M1y and M3 is a
strongly real Beauville group.

> (Fuertes & Gonzdlez-Diez, '09) Alt(n) for n > 6 (& Sym(n)
for n > 5)

(Fuertes & Jones, '09) PSL(2,p") (and SL(2,p")) for p" > 5
F., Y12) M]_]_, M]_2, .J]_, M22, .J2,. ..

F., '14+) 2By(2%*+1) for r > 1

F., '14+) G simple with |G| < 100000 000
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Thanks for listening!




