
Recent work on Beauville surfaces, structures and
groups

Ben Fairbairn
Birkbeck, University of London

SIGMAP, July 2014



Introduction

Definition
Let G be a finite group.

Given x , y ∈ G let

Σ(x , y) =
⋃
g∈G

|G |⋃
n=1

{(xn)g , (yn)g , ((xy)n)g}.

An (unmixed) Beauville structure for G is a set of pairs of
elements {{x1, y1}, {x2, y2}} ⊂ G × G such that

I 〈x1, y1〉 = 〈x2, y2〉 = G and

I Σ(x1, y1) ∩ Σ(x2, y2) = {e}.
If G has a Beauville structure, then G is a Beauville group.

A Beauville group gives a complex surface (a Beauville surface),
roughly speaking, via the quotient (C1 × C2)/G where C1, C2 are
compact Riemann surfaces, genus≥ 2 and the action is ‘really nice’
(Ci → Ci/G ∼= P1(C) ramified at 3 points etc).
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Why do we bother?

Basically, geometers like these surfaces because they’re easy to
work with and have many nice properties. . .

I These are surfaces of general type;

I they are rigid in the sense of admitting no non-trivial
infinitesimal deformations;

I their fundamental groups are easily calculated. . .

I as are their automorphism groups.

I They have uses, for example, the Friedman-Morgan
conjecture; action of Gal(Q/Q) on regular dessins.
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Examples

(Beauville, 1979) The group (Z/5Z)× (Z/5Z) acting on the
Fermat curve x5 + y5 + z5 = 0.

Theorem (Catanese ’00)

If G is an abelian group, then G is a Beauville group if and only if
G = (Z/nZ)× (Z/nZ) where n > 1 and gcd(n,6)=1.

I Recall that a finite group is nilpotent if and only if it is the
direct product of p-groups (groups of order pr for some prime
p and some r ∈ Z+).

I If G and H are Beauville groups that have coprime order, then
clearly G × H will be a Beauville group.

I The study of nilpotent Beauville groups thus reduces to the
study of Beauville p-groups.

I The above theorem gives infinitely many (non-abelian)
examples if p ≥ 5 - just set n = pr .



Examples

(Beauville, 1979) The group (Z/5Z)× (Z/5Z) acting on the
Fermat curve x5 + y5 + z5 = 0.

Theorem (Catanese ’00)

If G is an abelian group, then G is a Beauville group if and only if
G = (Z/nZ)× (Z/nZ) where n > 1 and gcd(n,6)=1.

I Recall that a finite group is nilpotent if and only if it is the
direct product of p-groups (groups of order pr for some prime
p and some r ∈ Z+).

I If G and H are Beauville groups that have coprime order, then
clearly G × H will be a Beauville group.

I The study of nilpotent Beauville groups thus reduces to the
study of Beauville p-groups.

I The above theorem gives infinitely many (non-abelian)
examples if p ≥ 5 - just set n = pr .



Examples

(Beauville, 1979) The group (Z/5Z)× (Z/5Z) acting on the
Fermat curve x5 + y5 + z5 = 0.

Theorem (Catanese ’00)

If G is an abelian group, then G is a Beauville group if and only if
G = (Z/nZ)× (Z/nZ) where n > 1 and gcd(n,6)=1.

I Recall that a finite group is nilpotent if and only if it is the
direct product of p-groups (groups of order pr for some prime
p and some r ∈ Z+).

I If G and H are Beauville groups that have coprime order, then
clearly G × H will be a Beauville group.

I The study of nilpotent Beauville groups thus reduces to the
study of Beauville p-groups.

I The above theorem gives infinitely many (non-abelian)
examples if p ≥ 5 - just set n = pr .



Examples

(Beauville, 1979) The group (Z/5Z)× (Z/5Z) acting on the
Fermat curve x5 + y5 + z5 = 0.

Theorem (Catanese ’00)

If G is an abelian group, then G is a Beauville group if and only if
G = (Z/nZ)× (Z/nZ) where n > 1 and gcd(n,6)=1.

I Recall that a finite group is nilpotent if and only if it is the
direct product of p-groups (groups of order pr for some prime
p and some r ∈ Z+).

I If G and H are Beauville groups that have coprime order, then
clearly G × H will be a Beauville group.

I The study of nilpotent Beauville groups thus reduces to the
study of Beauville p-groups.

I The above theorem gives infinitely many (non-abelian)
examples if p ≥ 5 - just set n = pr .



Examples

(Beauville, 1979) The group (Z/5Z)× (Z/5Z) acting on the
Fermat curve x5 + y5 + z5 = 0.

Theorem (Catanese ’00)

If G is an abelian group, then G is a Beauville group if and only if
G = (Z/nZ)× (Z/nZ) where n > 1 and gcd(n,6)=1.

I Recall that a finite group is nilpotent if and only if it is the
direct product of p-groups (groups of order pr for some prime
p and some r ∈ Z+).

I If G and H are Beauville groups that have coprime order, then
clearly G × H will be a Beauville group.

I The study of nilpotent Beauville groups thus reduces to the
study of Beauville p-groups.

I The above theorem gives infinitely many (non-abelian)
examples if p ≥ 5 - just set n = pr .



Examples

(Beauville, 1979) The group (Z/5Z)× (Z/5Z) acting on the
Fermat curve x5 + y5 + z5 = 0.

Theorem (Catanese ’00)

If G is an abelian group, then G is a Beauville group if and only if
G = (Z/nZ)× (Z/nZ) where n > 1 and gcd(n,6)=1.

I Recall that a finite group is nilpotent if and only if it is the
direct product of p-groups (groups of order pr for some prime
p and some r ∈ Z+).

I If G and H are Beauville groups that have coprime order, then
clearly G × H will be a Beauville group.

I The study of nilpotent Beauville groups thus reduces to the
study of Beauville p-groups.

I The above theorem gives infinitely many (non-abelian)
examples if p ≥ 5 - just set n = pr .



Examples

(Beauville, 1979) The group (Z/5Z)× (Z/5Z) acting on the
Fermat curve x5 + y5 + z5 = 0.

Theorem (Catanese ’00)

If G is an abelian group, then G is a Beauville group if and only if
G = (Z/nZ)× (Z/nZ) where n > 1 and gcd(n,6)=1.

I Recall that a finite group is nilpotent if and only if it is the
direct product of p-groups (groups of order pr for some prime
p and some r ∈ Z+).

I If G and H are Beauville groups that have coprime order, then
clearly G × H will be a Beauville group.

I The study of nilpotent Beauville groups thus reduces to the
study of Beauville p-groups.

I The above theorem gives infinitely many (non-abelian)
examples if p ≥ 5 - just set n = pr .



Examples

Nilpotent Beauville groups. . .

I (Bauer, Catanese & Grunewald, ’08) two examples of order 28.

I (Fuertes, González-Diez & Jaikin-Zapirain, ’11) example of
order 212 and example of 312.

I (Barker, Boston & F., ’12) examples of order pn, n ≤ 5(ish).

I (Barker, Boston, Peyerimhoff & Vdovina, ’11+) several further
examples (including infinite family of Beauville 2-groups).

I (Stix & Vdovina, ’14+) p ≥ 5, (Z/pmZ) : (Z/pmZ) is
Beauville iff m = n. Also discuss use of pro-p groups in this
context.

I (Jones, ’14) G is 2-generated of exponent p ≥ 5 ⇒ G is
Beauville.

Open Problem

Construct infinitely many Beauville 3-groups!
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I (Fuertes, González-Diez & Jaikin-Zapirain, ’11) example of
order 212 and example of 312.

I (Barker, Boston & F., ’12) examples of order pn, n ≤ 5(ish).

I (Barker, Boston, Peyerimhoff & Vdovina, ’11+) several further
examples (including infinite family of Beauville 2-groups).

I (Stix & Vdovina, ’14+) p ≥ 5, (Z/pmZ) : (Z/pmZ) is
Beauville iff m = n. Also discuss use of pro-p groups in this
context.

I (Jones, ’14) G is 2-generated of exponent p ≥ 5 ⇒ G is
Beauville.

Open Problem

Construct infinitely many Beauville 3-groups!



Examples

Nilpotent Beauville groups. . .

I (Bauer, Catanese & Grunewald, ’08) two examples of order 28.
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Simple examples?

Theorem (Steinberg 1962; Aschbacher & Guralnick, 1984)

Every finite simple group is 2-generated.

I Easy to see that Alt(5) is not a Beauville group.

Theorem (Garion, Larson, Lubotzky; Guralnick, Malle; F.,
Magaard & Parker, ’10-’13)

Every finite quasisimple group apart from Alt(5) and SL(2, 5) is a
Beauville group.

I Special cases had been settled earlier by various people
(Bauer, Catanese, Grunewald, Fuertes, Jones,
González-Diez. . .)



Simple examples?

Theorem (Steinberg 1962; Aschbacher & Guralnick, 1984)

Every finite simple group is 2-generated.

I Easy to see that Alt(5) is not a Beauville group.

Theorem (Garion, Larson, Lubotzky; Guralnick, Malle; F.,
Magaard & Parker, ’10-’13)

Every finite quasisimple group apart from Alt(5) and SL(2, 5) is a
Beauville group.

I Special cases had been settled earlier by various people
(Bauer, Catanese, Grunewald, Fuertes, Jones,
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Real matters

Recall that real structure on a Riemann surface R is an
antiholomorphic map σ : R → R such that σ ◦ σ is the identity

(σ
is locally ‘like z 7→ z ’).

Definition
A Beauville surface S is said to be real if there exists an
antiholomorphic σ : S → S such that σ ◦ σ is the identity.

Definition
A Beauville structure {{x1, y1}, {x2, y2}} ⊂ G × G of a Beauville
group G is strongly real if there exist automorphisms
φ1, φ2 ∈ Aut(G ) and elements g1, g2 ∈ G such that for i = 1, 2

giφi (xi )g−1i = x−1i and

giφi (yi )g−1i = y−1i .



Real matters

Recall that real structure on a Riemann surface R is an
antiholomorphic map σ : R → R such that σ ◦ σ is the identity (σ
is locally ‘like z 7→ z ’).

Definition
A Beauville surface S is said to be real if there exists an
antiholomorphic σ : S → S such that σ ◦ σ is the identity.

Definition
A Beauville structure {{x1, y1}, {x2, y2}} ⊂ G × G of a Beauville
group G is strongly real if there exist automorphisms
φ1, φ2 ∈ Aut(G ) and elements g1, g2 ∈ G such that for i = 1, 2

giφi (xi )g−1i = x−1i and

giφi (yi )g−1i = y−1i .



Real matters

Recall that real structure on a Riemann surface R is an
antiholomorphic map σ : R → R such that σ ◦ σ is the identity (σ
is locally ‘like z 7→ z ’).

Definition
A Beauville surface S is said to be real if there exists an
antiholomorphic σ : S → S such that σ ◦ σ is the identity.

Definition
A Beauville structure {{x1, y1}, {x2, y2}} ⊂ G × G of a Beauville
group G is strongly real if there exist automorphisms
φ1, φ2 ∈ Aut(G ) and elements g1, g2 ∈ G such that for i = 1, 2

giφi (xi )g−1i = x−1i and

giφi (yi )g−1i = y−1i .



Real matters

Recall that real structure on a Riemann surface R is an
antiholomorphic map σ : R → R such that σ ◦ σ is the identity (σ
is locally ‘like z 7→ z ’).

Definition
A Beauville surface S is said to be real if there exists an
antiholomorphic σ : S → S such that σ ◦ σ is the identity.

Definition
A Beauville structure {{x1, y1}, {x2, y2}} ⊂ G × G of a Beauville
group G is strongly real if there exist automorphisms
φ1, φ2 ∈ Aut(G ) and elements g1, g2 ∈ G such that for i = 1, 2

giφi (xi )g−1i = x−1i and

giφi (yi )g−1i = y−1i .



Examples of stongly real Beauville groups

I Every abelian Beauville group is a strongly real Beauville
group.

I As far as I am aware there are no known examples of strongly
real Beauville p-groups!

Open Problem

Construct examples of non-abelian strongly real Beauville p-groups.
I (F. ’14+) Various further examples

I Sym(n)× Sym(n) for n ≥ 5;
I some groups of the form Alt(n)× · · · × Alt(n);
I some almost simple groups.

Conjecture

An almost simple group is a Beauville group if and only if it is a
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strongly real Beauville group.
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I (Fuertes & Jones, ’09) PSL(2, pr ) (and SL(2, pr )) for pr > 5

I (F., ’12) M11, M12, J1, M22, J2,. . .

I (F., ’14+) 2B2(22r+1) for r > 1

I (F., ’14+) G simple with |G | ≤ 100 000 000



Examples of stongly real Beauville groups

Conjecture (Bauer, Catanese & Grunewald ’00; F. ’14+)

Every finite simple group apart from Alt(5), M11 and M23 is a
strongly real Beauville group.
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Thanks for listening!


