C-groups of PSL(2, q) and PGL(2, q)

Thomas Connor ¹ Sebastian Jambor ² Dimitri Leemans ²

¹Université libre de Bruxelles

²University of Auckland

SIGMAP, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Coxeter groups

C-groups

String C-groups of PSL(2, q) and PGL(2, q)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

C-groups of PSL(2, q) and PGL(2, q)

Coxeter groups

A (finitely generated) Coxeter group (W, S) is a group W together with a set $S = \{r_0, \ldots, r_{n-1}\}$ that admits the following presentation

$$G = \langle r_0, \ldots, r_{n-1} \mid (r_i r_j)^{m_{ij}} = 1 \rangle$$
(1)

where

•
$$m_{ii} = 1;$$

▶
$$2 \le m_{ij} \le \infty$$
, for $i \ne j$.

In other words, W is a group generated by involutions r_0, \ldots, r_{n-1} ; the only relations between the generators are the orders of their pairwise products.

The diagram of the Coxeter group (W, S) is an undirected labelled graph such that

- vertices are indexed by involutions r_0, \ldots, r_{n-1} ;
- ► the pair {r_i, r_j} is an edge iff m_{ij} ≥ 3 (i.e. iff r_i and r_j do not commute);

▶ the edge $\{r_i, r_j\}$ is labelled with the order $p_{ij} = o(r_i r_j)$.

Finite Coxeter groups

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

C-groups

A *C*-group of rank *n* is a pair (*G*, *S*) such that *G* is a group and $S := \{\rho_0, \ldots, \rho_{n-1}\}$ is a generating set of involutions of *G* that satisfy the following property for all subsets $I, J \subseteq \{0, \ldots, n-1\}$.

$$\langle \rho_i \mid i \in I \rangle \cap \langle \rho_j \mid j \in J \rangle = \langle \rho_k \mid k \in I \cap J \rangle$$
(2)

C-groups

Let $(W, \{r_0, \ldots, r_{n-1}\})$ be a Coxeter group and let $(G, \{\rho_0, \ldots, \rho_{n-1}\})$ be a C-group of same diagram.

Then there exists a surjective homomorphism

$$\sigma: W \to G: r_i \mapsto \rho_i$$

such that $\sigma : \langle r_i, r_j \rangle \mapsto \langle \rho_i, \rho_j \rangle$ is an isomorphism. C-groups are smooth quotients of Coxeter groups.

String C-groups

C-groups with a string diagram are called string C-groups. They are also called abstract regular polytopes.

- Natural generalization of 'usual' regular polytopes.
- Natural language between combinatorial object and algebraic structures.

- Many recent results
 - in the context of finite simple groups
 - from a combinatorial viewpoint
 - from a topological viewpoint

Polytopes for PSL(2, q) and PGL(2, q)

Lemma (Sjerve & Cherkassof, Leemans & Vauthier, Leemans & Schulte)

Let $q = p^k$ be a prime power and let G = PSL(2, q). Then G may be generated by three involutions, two of which commute, if and only if $q \neq 2, 3, 7$ or 9. Moreover, if G is the full automorphism group of a regular polytope of rank 4, then q = 11 or 19. Finally, G is not the full automorphism group of a regular polytope of rank 5 and higher.

Lemma (Sjerve & Cherkassof, Leemans & Schulte) Let $q = p^k$ be a prime power and let G = PGL(2, q). Then Gmay be generated by three involutions, two of which commute, if and only if $q \neq 2$. Moreover, if G is the full automorphism group of a regular polytope of rank 4, then $G = PGL(2,5) \cong S_5$. Finally, G is not the full automorphism group of a regular polytope of rank 5 and higher.

Dropping the string condition

- Natural generalization
- C-groups are smooth quotients of Coxeter groups
- Related to independent generating sets
- ▶ Flag-transitive, residually connected, thin geometries are C-groups
 Drawback: in rank ≥ 4, the converse is not necessarily true: a C-group may not be a regular geometry anymore.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Results in the case of Sz(q) (Connor & Leemans, 2013).

Minimax sets of PSL(2, q)

Theorem (Saxl & Whiston, 2002)

Let $G \cong PSL(2, q)$ for some prime power $q = p^d$.

- If d = 1 then μ(G) ≤ 4. Moreover μ(G) = 3 unless p ≡ ±1 mod 8 or p ≡ ±1 mod 10.
- If d ≥ 2 then µ(G) ≤ max(6, π + 2) where π = π(d) is the number of distinct prime divisors of d.

Theorem (Jambor, 2013)

Let p be a prime. The group PSL(2, p) has a minimax set of size four if and only if $p \in \{7, 11, 19, 31\}$. More precisely, up to automorphisms there are two minimax sets of size four for PSL(2,7), fourteen for PSL(2,11), three for PSL(2,19) and one for PSL(2,31). C-groups related to PSL(2, q) and PGL(2, q)

Theorem (Connor, Jambor & Leemans, 2014)

Let $G \cong PSL(2, q)$ for some prime power $q \ge 4$. The C-rank of G is 4 if and only if $q \in \{7, 9, 11, 19, 31\}$. Otherwise it is 3. The list of C-groups of rank 4 is given in Table 1. Let $G \cong PGL(2, q)$ for some prime power $q \ge 4$. The C-rank of G is 4 if and only if q = 5. Otherwise it is 3. The list of C-groups of rank 4 is given in Table 2.

C-groups of rank 4 for PSL(2, q)

q	$\rho_0 \rho_1$	$\rho_0 \rho_2$	$\rho_0 \rho_3$	$\rho_1 \rho_2$	$\rho_1 \rho_3$	$\rho_2 \rho_3$	Max. Para.	FT
7	4	2	3	3	2	4	S4, S4, S4, S4	yes
	4	2	3	3	2	3	S4, S4, S4, S4	yes
9	3	2	3	3	3	5	A ₅ , A ₅ , E ₉ \rtimes C ₂ , S ₄	no
	3	2	5	4	2	3	S4, A5, A5, S4	no
11	3	2	2	5	2	3	A ₅ , D ₂₀ , D ₂₀ , A ₅	yes
	5	2	2	3	5	3	A5, D12, A5, A5	yes
	5	2	2	3	5	3	A ₅ , D ₁₂ , A ₅ , A ₅	yes
	3	3	3	5	5	5	A5, A5, A5, A5	no
	3	5	5	5	5	3	A5, A5, A5, A5	yes
19	5	2	2	3	2	5	A ₅ , D ₂₀ , D ₂₀ , A ₅	yes
	5	2	2	3	3	5	A5, D20, A5, A5	yes
	3	3	5	5	3	3	A5, A5, A5, A5	yes
31	3	2	3	3	2	5	A ₅ , A ₅ , S ₄ , S ₄	yes

Table : C-groups of rank 4 for PSL(2, q)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

C-groups of rank 4 of PGL(2, q)

$\rho_0 \rho_1$	$\rho_0 \rho_2$	$\rho_0 \rho_3$	$\rho_1 \rho_2$	$\rho_1 \rho_3$	$\rho_2 \rho_3$	Max. Para.	FT
3	2	2	3	2	3	S ₄ , D ₁₂ , D ₁₂ , S ₄	yes
3	2	2	3	3	3	S ₄ , D ₁₂ , S ₄ , S ₄	yes
3	3	3	3	3	3	S4, S4, S4, S4	yes

Table : C-groups of rank 4 for PGL(2,5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure : The boolean lattice of a C-group of rank 3

Figure : The boolean lattice of a C-group of rank 4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figure : The boolean lattice of a C-group of rank 5

(日)、

э

- 1. Select possible subgroups of PSL(2, q) and PGL(2, q) that could be maximal parabolic subgroups (namely subfield subgroups, A₅, S₄, elementary abelian 2–groups or simply even dihedral groups).
- 2. Use that information and the intersection property to bound the rank of a C-group representation for PSL(2, q) and PGL(2, q).
- 3. Build the list of possible diagrams of a C-group representation of PSL(2, q) and PGL(2, q) using C-groups representations of possible maximal parabolic subgroups.
- 4. Use the L_2 -quotient algorithm to build the actual C-groups representations.

Table : Square diagrams (2)

Table : Cherry diagrams

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Thomas Connor, Sebastian Jambor and Dimitri Leemans C-groups of PSL(2, q) and PGL(2, q). Preprint, 2014.

Sebastian Jambor.

The minimal generating sets of PSL(2, *p*) of size four. *LMS J. Comput. Math.*, 16:419–423, 2013.

Sebastian Jambor.

An $\mathrm{L}_2\text{-quotient}$ algorithm for finitely presented groups on arbitrarily many generators.

Preprint, 2014. arxiv:1402.6788.

Dimitri Leemans and Egon Schulte. Groups of type $L_2(q)$ acting on polytopes. *Adv. Geom.*, 7(4):529–539, 2007.

Dimitri Leemans and Egon Schulte. Polytopes with groups of type PGL₂(*q*). *Ars Math. Contemp.*, 2(2):163–171, 2009.

Denis Sjerve and Michael Cherkassoff. On groups generated by three involutions, two of which commute. In *The Hilton Symposium 1993 (Montreal, PQ)*, volume 6 of *CRM Proc. Lecture Notes*, pages 169–185. Amer. Math. Soc., Providence, RI, 1994.

Julius Whiston and Jan Saxl.

On the maximal size of independent generating sets of $PSL_2(q)$. J. Algebra, 258(2):651–657, 2002.

Acknowledgement

My participation to SIGMAP 2014 was supported by the FRIA. This research was supported by the FNRS and by Marsden Grant 12-UOA-083.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ