C-groups of $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$

Thomas Connor ${ }^{1}$ Sebastian Jambor ${ }^{2}$ Dimitri Leemans ${ }^{2}$
${ }^{1}$ Université libre de Bruxelles
${ }^{2}$ University of Auckland

SIGMAP, 2014

Coxeter groups

C-groups

String C-groups of $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$

C-groups of $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$

Coxeter groups

A (finitely generated) Coxeter group (W, S) is a group W together with a set $S=\left\{r_{0}, \ldots, r_{n-1}\right\}$ that admits the following presentation

$$
\begin{equation*}
G=\left\langle r_{0}, \ldots, r_{n-1} \mid\left(r_{i} r_{j}\right)^{m_{i j}}=1\right\rangle \tag{1}
\end{equation*}
$$

where

- $m_{i i}=1$;
- $2 \leq m_{i j} \leq \infty$, for $i \neq j$.

In other words, W is a group generated by involutions r_{0}, \ldots, r_{n-1}; the only relations between the generators are the orders of their pairwise products.

Coxeter groups

The diagram of the Coxeter group (W, S) is an undirected labelled graph such that

- vertices are indexed by involutions r_{0}, \ldots, r_{n-1};
- the pair $\left\{r_{i}, r_{j}\right\}$ is an edge iff $m_{i j} \geq 3$ (i.e. iff r_{i} and r_{j} do not commute);
- the edge $\left\{r_{i}, r_{j}\right\}$ is labelled with the order $p_{i j}=o\left(r_{i} r_{j}\right)$.

Finite Coxeter groups

A_{n}	$\bullet \bullet \bullet----\bullet \bullet$	$B_{n}=C_{n}$	- - - ---- ${ }^{4}$
D_{n}	$\bullet \bullet---\cdots$	F_{4}	$\bullet .4$
E_{6}		H_{3}	-. ${ }^{5}$
E_{7}		H_{4}	$\bullet .5$
E_{8}		$I_{2}(n)$	\bullet n

C-groups

A C-group of rank n is a pair (G, S) such that G is a group and $S:=\left\{\rho_{0}, \ldots, \rho_{n-1}\right\}$ is a generating set of involutions of G that satisfy the following property for all subsets $I, J \subseteq\{0, \ldots, n-1\}$.

$$
\begin{equation*}
\left\langle\rho_{i} \mid i \in I\right\rangle \cap\left\langle\rho_{j} \mid j \in J\right\rangle=\left\langle\rho_{k} \mid k \in I \cap J\right\rangle \tag{2}
\end{equation*}
$$

C-groups

Let $\left(W,\left\{r_{0}, \ldots, r_{n-1}\right\}\right)$ be a Coxeter group and let ($G,\left\{\rho_{0}, \ldots, \rho_{n-1}\right\}$) be a C-group of same diagram.
Then there exists a surjective homomorphism

$$
\sigma: W \rightarrow G: r_{i} \mapsto \rho_{i}
$$

such that $\sigma:\left\langle r_{i}, r_{j}\right\rangle \mapsto\left\langle\rho_{i}, \rho_{j}\right\rangle$ is an isomorphism. C-groups are smooth quotients of Coxeter groups.

String C-groups

C-groups with a string diagram are called string C-groups. They are also called abstract regular polytopes.

- Natural generalization of 'usual' regular polytopes.
- Natural language between combinatorial object and algebraic structures.
- Many recent results
- in the context of finite simple groups
- from a combinatorial viewpoint
- from a topological viewpoint

Polytopes for $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$

Lemma (Sjerve \& Cherkassof, Leemans \& Vauthier, Leemans \& Schulte)
Let $q=p^{k}$ be a prime power and let $G=\operatorname{PSL}(2, q)$. Then G may be generated by three involutions, two of which commute, if and only if $q \neq 2,3,7$ or 9 . Moreover, if G is the full automorphism group of a regular polytope of rank 4 , then $q=11$ or 19. Finally, G is not the full automorphism group of a regular polytope of rank 5 and higher.

Lemma (Sjerve \& Cherkassof, Leemans \& Schulte)

Let $q=p^{k}$ be a prime power and let $G=\operatorname{PGL}(2, q)$. Then G may be generated by three involutions, two of which commute, if and only if $q \neq 2$. Moreover, if G is the full automorphism group of a regular polytope of rank 4 , then $G=\operatorname{PGL}(2,5) \cong S_{5}$. Finally, G is not the full automorphism group of a regular polytope of rank 5 and higher.

Dropping the string condition

- Natural generalization
- C-groups are smooth quotients of Coxeter groups
- Related to independent generating sets
- Flag-transitive, residually connected, thin geometries are C-groups
Drawback: in rank ≥ 4, the converse is not necessarily true: a C-group may not be a regular geometry anymore.
- Results in the case of $\mathrm{Sz}(q)$ (Connor \& Leemans, 2013).

Minimax sets of $\operatorname{PSL}(2, q)$

Theorem (Saxl \& Whiston, 2002)
Let $G \cong \operatorname{PSL}(2, q)$ for some prime power $q=p^{d}$.

- If $d=1$ then $\mu(G) \leq 4$. Moreover $\mu(G)=3$ unless $p \equiv \pm 1$ $\bmod 8$ or $p \equiv \pm 1 \bmod 10$.
- If $d \geq 2$ then $\mu(G) \leq \max (6, \pi+2)$ where $\pi=\pi(d)$ is the number of distinct prime divisors of d.

Theorem (Jambor, 2013)
Let p be a prime. The group $\operatorname{PSL}(2, p)$ has a minimax set of size four if and only if $p \in\{7,11,19,31\}$. More precisely, up to automorphisms there are two minimax sets of size four for $\operatorname{PSL}(2,7)$, fourteen for $\operatorname{PSL}(2,11)$, three for PSL $(2,19)$ and one for $\operatorname{PSL}(2,31)$.

C-groups related to $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$

Theorem (Connor, Jambor \& Leemans, 2014)
Let $G \cong \operatorname{PSL}(2, q)$ for some prime power $q \geq 4$. The C-rank of G is 4 if and only if $q \in\{7,9,11,19,31\}$. Otherwise it is 3 . The list of C-groups of rank 4 is given in Table 1.
Let $G \cong \operatorname{PGL}(2, q)$ for some prime power $q \geq 4$. The C-rank of G is 4 if and only if $q=5$. Otherwise it is 3 . The list of C-groups of rank 4 is given in Table 2.

C-groups of rank 4 for $\operatorname{PSL}(2, q)$

q	$\rho_{0} \rho_{1}$	$\rho_{0} \rho_{2}$	$\rho_{0} \rho_{3}$	$\rho_{1} \rho_{2}$	$\rho_{1} \rho_{3}$	$\rho_{2} \rho_{3}$	Max. Para.	FT
7	4	2	3	3	2	4	$\mathrm{~S}_{4}, \mathrm{~S}_{4}, \mathrm{~S}_{4}, \mathrm{~S}_{4}$	yes
	4	2	3	3	2	3	$\mathrm{~S}_{4}, \mathrm{~S}_{4}, \mathrm{~S}_{4}, \mathrm{~S}_{4}$	yes
9	3	2	3	3	3	5	$\mathrm{~A}_{5}, \mathrm{~A}_{5}, \mathrm{E}_{9} \nmid \mathrm{C}_{2}, \mathrm{~S}_{4}$	no
	3	2	5	4	2	3	$\mathrm{~S}_{4}, \mathrm{~A}_{5}, \mathrm{~A}_{5}, \mathrm{~S}_{4}$	no
11	3	2	2	5	2	3	$\mathrm{~A}_{5}, \mathrm{D}_{20}, \mathrm{D}_{20}, \mathrm{~A}_{5}$	yes
	5	2	2	3	5	3	$\mathrm{~A}_{5}, \mathrm{D}_{12}, \mathrm{~A}_{5}, \mathrm{~A}_{5}$	yes
	5	2	2	3	5	3	$\mathrm{~A}_{5}, \mathrm{D}_{12}, \mathrm{~A}_{5}, \mathrm{~A}_{5}$	yes
	3	3	3	5	5	5	$\mathrm{~A}_{5}, \mathrm{~A}_{5}, \mathrm{~A}_{5}, \mathrm{~A}_{5}$	no
	3	5	5	5	5	3	$\mathrm{~A}_{5}, \mathrm{~A}_{5}, \mathrm{~A}_{5}, \mathrm{~A}_{5}$	yes
19	5	2	2	3	2	5	$\mathrm{~A}_{5}, \mathrm{D}_{20}, \mathrm{D}_{20}, \mathrm{~A}_{5}$	yes
	5	2	2	3	3	5	$\mathrm{~A}_{5}, \mathrm{D}_{20}, \mathrm{~A}_{5}, \mathrm{~A}_{5}$	yes
	3	3	5	5	3	3	$\mathrm{~A}_{5}, \mathrm{~A}_{5}, \mathrm{~A}_{5}, \mathrm{~A}_{5}$	yes
31	3	2	3	3	2	5	$\mathrm{~A}_{5}, \mathrm{~A}_{5}, \mathrm{~S}_{4}, \mathrm{~S}_{4}$	yes

Table: C-groups of rank 4 for $\operatorname{PSL}(2, q)$

C-groups of rank 4 of $\operatorname{PGL}(2, q)$

$\rho_{0} \rho_{1}$	$\rho_{0} \rho_{2}$	$\rho_{0} \rho_{3}$	$\rho_{1} \rho_{2}$	$\rho_{1} \rho_{3}$	$\rho_{2} \rho_{3}$	Max. Para.	FT
3	2	2	3	2	3	$\mathrm{~S}_{4}, \mathrm{D}_{12}, \mathrm{D}_{12}, \mathrm{~S}_{4}$	yes
3	2	2	3	3	3	$\mathrm{~S}_{4}, \mathrm{D}_{12}, \mathrm{~S}_{4}, \mathrm{~S}_{4}$	yes
3	3	3	3	3	3	$\mathrm{~S}_{4}, \mathrm{~S}_{4}, \mathrm{~S}_{4}, \mathrm{~S}_{4}$	yes

Table: C-groups of rank 4 for $\operatorname{PGL}(2,5)$

Strategy of the proof of the main result

Figure: The boolean lattice of a C-group of rank 3

Strategy of the proof of the main result

Figure: The boolean lattice of a C-group of rank 4

Strategy of the proof of the main result

Figure: The boolean lattice of a C-group of rank 5

Strategy of the proof of the main result

1. Select possible subgroups of $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ that could be maximal parabolic subgroups (namely subfield subgroups, $\mathrm{A}_{5}, \mathrm{~S}_{4}$, elementary abelian 2-groups or simply even dihedral groups).
2. Use that information and the intersection property to bound the rank of a C-group representation for $\operatorname{PSL}(2, q)$ and PGL(2, q).
3. Build the list of possible diagrams of a C-group representation of $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$ using C-groups representations of possible maximal parabolic subgroups.
4. Use the L_{2}-quotient algorithm to build the actual C-groups representations.

Strategy of the proof of the main result

Table: Square diagrams (1)

Strategy of the proof of the main result

Table: Square diagrams (2)

Strategy of the proof of the main result

Table: Cherry diagrams

Thomas Connor, Sebastian Jambor and Dimitri Leemans C-groups of $\operatorname{PSL}(2, q)$ and $\operatorname{PGL}(2, q)$.
Preprint. 2014.
Sebastian Jambor.
The minimal generating sets of $\operatorname{PSL}(2, p)$ of size four.
LMS J. Comput. Math., 16:419-423, 2013.
兰
Sebastian Jambor.
An L_{2}-quotient algorithm for finitely presented groups on arbitrarily many generators.
Preprint, 2014.
arxiv:1402.6788.

Dimitri Leemans and Egon Schulte.
Groups of type $L_{2}(q)$ acting on polytopes.
Adv. Geom., 7(4):529-539, 2007.

Dimitri Leemans and Egon Schulte.
Polytopes with groups of type $\mathrm{PGL}_{2}(q)$.
Ars Math. Contemp., 2(2):163-171, 2009.

Denis Sjerve and Michael Cherkassoff.
On groups generated by three involutions, two of which commute.
In The Hilton Symposium 1993 (Montreal, PQ), volume 6 of CRM Proc. Lecture Notes, pages 169-185. Amer. Math. Soc., Providence, RI, 1994.

Julius Whiston and Jan Saxl.
On the maximal size of independent generating sets of $\mathrm{PSL}_{2}(q)$.
J. Algebra, 258(2):651-657, 2002.

Acknowledgement

My participation to SIGMAP 2014 was supported by the FRIA. This research was supported by the FNRS and by Marsden Grant 12-UOA-083.

