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Cyclic Haar graphs

Definition (Cyclic Haar graph)

Let S ⊆ Zk. The graph with vertex set {ui, vi | i ∈ Zk} and edge set
{uivi+` | i ∈ Zn, ` ∈ S}, denoted H(k, S), is called a cyclic Haar graph of
Zk with respect to symbol S.

More general definition:

Definition (Haar graph)

Let Γ be an abelian group, A ⊆ Γ. A dipole with |A| parallel arcs, labeled
by elements of A = {a1, a2, . . .} is a voltage graph. Its regular covering
graph, denoted H(Γ, A), is called a Haar graph.

a|A|a1 a2 · · ·
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Cyclic Haar graphs

Studied by Hladnik, Marušič, and Pisanski (2002):

Proposition

H(k, S) is isomorphic to BiCirk(∅, ∅, S).

Notation H(k, S) can be simplified:
(Let n =

∑
i bi2

i.) Define H(n) = H(1 + blog2 nc, {i | bi = 1}).

We can assume k − 1 ∈ S. Let n =
∑

i∈S 2i. Then H(n) = H(k, S).

Note: There may exist n1 6= n2 such that H(n1) ∼= H(n2). Smallest such
number is called canonical number.
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Cyclic Haar graphs
Some more facts . . .

Proposition

A circulant is a cyclic Haar graph if and only if it is bipartite.

(There are cyclic Haar graphs out there that are not circulants.)

Proposition

Cubic connected cyclic Haar graphs are hamiltonian.

(Alspach and Zhang proved that every cubic Cayley graph of a dihedral
group is hamiltonian.)
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Cyclic Haar graphs
Some facts about girth . . .

Proposition

Let H(n) be a connected cyclic Haar graph. Then one of the following is
true:

1 n = 1 and H(1) ∼= K2 has infinite girth;

2 n = 2k−1 + 1 and H(n) ∼= C2k has girth 2k;

3 H(n) has valency greater than 2 and girth 4;

4 H(n) has valency greater than 2 and girth 6.
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Configurations

Definition

A combinatorial (vk) configuration is an incidence structure C = (P,B, I),
I ⊆ P × B, P ∩ B = ∅, where:

1 |P| = |B| = v,

2 |{b | (p, b) ∈ I}| = k for every p ∈ P (i.e. there are k lines through
each point), and

3 |{p | (p, b) ∈ I}| = k for every b ∈ B (i.e. there are k points on each
line).

The elements of P are called points.

The elements of B are called lines (sometimes blocks).

The relation I is called incidence.

Comment: There may be only one line going through two different points.
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Configurations
An example

1
32

4
65

7 8 9

Configuration table:

1 4 7 1 1 2 2 3 3
2 5 8 5 6 4 6 4 5
3 6 9 7 8 7 9 8 9
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Levi graph

Definition

The bipartite graph L(C) on the vertex set P ∪ B with edges between
p ∈ P and b ∈ B if the elements p and b are incident in C, i.e. if (p, b) ∈ I,
is called the Levi graph of configuration C.

1
2
3
4
5
6
7
8
9

Note: Any configuration is completely determined by a k-valent 2-colored
graph of girth at least 6.
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Isomorphism. Dual configuration

Definition

An isomorphism between C1 = (P1,B1, I1) and C2 = (P2,B2, I2) is a
bijective map α : P1 ∪ B1 → P2 ∪ B2, α(P1) ⊆ P2, α(B1) ⊆ B2, such that

(p, b) ∈ I1 ⇐⇒ (α(p), α(b)) ∈ I2

for every p ∈ P1 and every b ∈ B1.

Definition

Configuration C∗ = (B,P, I−1) is called the dual of configuration
C = (P,B, I).

Reverse coloring of vertices of the Levi graph determines the dual
configuration.
A configuration that is isomorphic to its dual is called self-dual.
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Cyclic configurations

Definition

We call a configuration C cyclic if it has an automorphism that is cyclic on
points of C (permutes its points in a full cycle).

Cyclic configurations and cyclic Haar graphs are closely related:

Corollary (Hladnik, Marušič, Pisanski)

1 The cyclic Haar graphs of girth 6 are precisely Levi graphs of cyclic
configurations.

2 Each cyclic configuration is self-dual, point-transitive, and
line-transitive.

3 There are no triangle-free cyclic configurations.
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Square graph

Definition

The square of graph G, denoted G2, is a graph with vertex set
V (G2) = V (G) where two vertices are adjacent if and only if their
distance in G is at most 2, i.e. E(G2) = {uv | dG(u, v) ≤ 2}.

The square of a Levi graph L(C) is called the Grünbaum graph of C.
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Unsplittable configurations

Formally introduced in the monograph Configurations of Points and Lines
by Grünbaum. Later also used in Configurations from a Graphical
Viewpoint by Servatius and Pisanski.

Definition

A configuration C is splittable if there exists an independent set of vertices
S in the Grünbaum graph L2(C) such that the graph obtained by
removing S from the Levi graph L(C) is disconnected.

Set S is called a splitting set of elements. A configuration that is not
splittable is called unsplittable.

An independent set in the Grünbaum graph is called independent set of
elements of C.

The Pappus configuration is unsplittable.
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Unsplittable graphs

The notion was generalized to graphs by T. W. Tucker and Pisanski.

Definition

A graph G is splittable if there exists an independent set S in G2 such
that X − S is disconnected.
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Maximum number of independent elements
Grünbaum’s conjecture disproved

Grünbaum conjectured and upper bound of bv/rc+ 1 for the size of a
maximal independent set of elements of C.

Theorem (Tucker, Pisanski)

Let G be a r-regular graph on n vertices and let M be the size of a
maximal independent set of G2. Then

M ≤ bn/(r + 1)c.

Theorem (Tucker, Pisanski)

Let M be the size of an independent set of elements of a (vr)
configuration. Then

M ≤ b2v/(r + 1)c.

Moreover, for each integer r ≥ 3, there exists an integer v, divisible by
r+ 1, and a connected geometric (vr) configuration with M = 2v/(r+ 1).
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Refinement of (un)splittability

Grünbaum also considered refinements of the notion of splittability:

Definition

Configuration C is point-splittable (line-splittable) if it is splittable and the
splitting set of elements consists of points only (lines only).

Note: These refinements can be defined for any 2-colored graph.

For a configuration there are four possibilities – splitting types:
Any configuration may be:

Type 1: point-splittable, line-splittable

Type 2: point-splittable, line-unsplittable

Type 3: point-unsplittable, line-splittable

Type 4: point-unsplittable, line-unsplittable
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Refinement of (un)splittability
Some examples and observations

Note: Configurations of splitting types 1, 2, and 3 are splittable.

Figure: A point-splittable configuration of type 2. Its dual is of type 3.
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Refinement of (un)splittability
Some more examples and observations

Note: A configuration of splitting type 4 (point-unsplittable,
line-unsplittable) may be splittable or unsplittable.

Figure: A splittable configuration of type 4.
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Refinement of (un)splittability
How about cyclic configurations?

Proposition

If C is of type 1 then its dual is of type 1. If it is of type 2 then its dual is
of type 3. If it is of type 4 then its dual is of type 4.

This has a straightforward consequence for cyclic configurations:

Corollary

Any self-dual configuration (in particular any cyclic configuration) is either
of type 1 or 4.

N. B., J. G., B. G., J. K., T. P. (Un)splittable graphs and configurations 10th July 2014 18 / 24



Refinement of (un)splittability
How about cyclic configurations?

Proposition

If C is of type 1 then its dual is of type 1. If it is of type 2 then its dual is
of type 3. If it is of type 4 then its dual is of type 4.

This has a straightforward consequence for cyclic configurations:

Corollary

Any self-dual configuration (in particular any cyclic configuration) is either
of type 1 or 4.

N. B., J. G., B. G., J. K., T. P. (Un)splittable graphs and configurations 10th July 2014 18 / 24



Splittable and unsplittable cyclic configurations
Cyclic (v3) configurations

In 3-valent case combinatorial isomorphisms of cyclic configurations
are well-understood.

One would expect that large sparse graphs are splittable. In this sense
the following result is not a surprise:

Proposition

There exist infinitely many cyclic (v3) configurations that are splittable.

Use cyclic Haar graphs H(v, {0, 1, 4}), where v ≥ 13.

(We also found other families of splittable cyclic Haar graphs with girth 6,
e.g. H(v, {0, 1, 5}) and H(v, {0, 2, 5}) for v ≥ 16.)
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Splittable and unsplittable cyclic configurations
How about unsplittable configurations?

Proposition

There exist infinitely many cyclic (v3) configurations that are unsplittable.

Use the cyclic Haar graphs
H(v, {0, 1, 3}) = LCF[5,−5]n,
where n ≥ 7.

Figure:
H(7, {0, 1, 3}) = CLF[5,−5]7 alias
the Heawood graph (blue edges)
and its Grünbaum graph (blue and
orange).
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Splittable and unsplittable cyclic configurations
How about unsplittable configurations?

There is another infinite family:

Proposition

Cyclic configurations defined by H(3n, {0, 1, n}), where n ≥ 2, are
unsplittable.

We’re working on complete characterization of cyclic (v3) configurations
with respect to splittability. We believe there are just two more families
apart from those mentioned above . . .
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Complete list of cyclic Haar graphs (up to 30 vertices)

n all girth 6 split. unsplit. split., g. 6 unsplit., g. 6

3 1 0 0 1 0 0
4 1 0 0 1 0 0
5 1 0 0 1 0 0
6 2 0 0 2 0 0
7 2 1 0 2 0 1
8 3 1 1 2 0 1
9 2 1 0 2 0 1

10 3 1 1 2 0 1
11 2 1 0 2 0 1
12 5 3 1 4 0 3
13 3 2 1 2 1 1
14 4 2 2 2 1 1
15 5 4 1 4 1 3
16 5 3 3 2 2 1
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List of cyclic Haar graphs (up to 30 vertices) cont’d

n all girth 6 split. unsplit. split., g. 6 unsplit., g. 6

17 3 2 1 2 1 1
18 6 4 3 3 2 2
19 4 3 2 2 2 1
20 7 5 5 2 4 1
21 7 6 3 4 3 3
22 6 4 4 2 3 1
23 4 3 2 2 2 1
24 11 9 7 4 6 3
25 5 4 3 2 3 1
26 7 5 5 2 4 1
27 6 5 3 3 3 2
28 9 7 7 2 6 1
29 5 4 3 2 3 1
30 13 11 9 4 8 3
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To be continued . . .
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