Locally-transitive graphs and group amalgams

Gabriel Verret

The University of Western Australia

SIGMAP, July 7th 2014
All graphs are connected and simple. (Not always finite.)
Motivating theorems

Theorem (Tutte (1947,1959))

In a finite cubic arc-transitive graph, arc-stabilisers have order at most 16.
Motivating theorems

Theorem (Tutte (1947,1959))

In a finite cubic arc-transitive graph, arc-stabilisers have order at most 16.

A graph is locally-transitive if every vertex-stabiliser acts transitively on the neighbours of the corresponding vertex. It is easy to see that a locally-transitive graph is edge-transitive and that it is either arc-transitive, or is bipartite and has two orbits on vertices.
Motivating theorems

Theorem (Tutte (1947,1959))

In a finite cubic \textit{arc-transitive} graph, arc-stabilisers have order at most 16.

A graph is \textit{locally-transitive} if every vertex-stabiliser acts transitively on the neighbours of the corresponding vertex. It is easy to see that a locally-transitive graph is edge-transitive and that it is either arc-transitive, or is bipartite and has two orbits on vertices.

Theorem (Goldschmidt (1980))

In a finite cubic \textit{locally-transitive} graph, arc-stabilisers have order at most 128.
The obvious generalisation of Goldschmidt’s (or Tutte’s) result to higher valencies is false in general.
The Goldschmidt Conjecture

The obvious generalisation of Goldschmidt’s (or Tutte's) result to higher valencies is false in general.

Conjecture

*Let p and q be prime numbers. There exists a constant c such that, in a finite locally-transitive graph with valencies \{p, q\}, arc-stabilisers have order at most c.***
The obvious generalisation of Goldschmidt’s (or Tutte’s) result to higher valencies is false in general.

Conjecture

Let p and q be prime numbers. There exists a constant c such that, in a finite locally-transitive graph with valencies $\{p, q\}$, arc-stabilisers have order at most c.

Theorem (Morgan (2013))

In a connected finite 5-valent locally-transitive graph, arc-stabilisers have order at most $5! \cdot 4!^5$.
Local action

Definition
Let L_1 and L_2 be finite transitive permutation groups and let Γ be a G-locally-transitive graph. We say that (Γ, G) is locally $[L_1, L_2]$ if, for some edge $\{u, v\}$ of Γ, we have permutation isomorphisms $G_{\Gamma(u)} \cong L_1$ and $G_{\Gamma(v)} \cong L_2$.

(Trivial) Example: if L_1 and L_2 are regular then $[L_1, L_2]$ is locally-restrictive.

(Non-trivial) Example: Goldschmidt's result implies that $[Z_3, Z_3]$, $[Z_3, \text{Sym}(3)]$ and $[\text{Sym}(3), \text{Sym}(3)]$ are locally-restrictive.
Local action

Definition
Let L_1 and L_2 be finite transitive permutation groups and let Γ be a G-locally-transitive graph. We say that (Γ, G) is locally $[L_1, L_2]$ if, for some edge $\{u, v\}$ of Γ, we have permutation isomorphisms $G_{\Gamma(u)} \cong L_1$ and $G_{\Gamma(v)} \cong L_2$.

Definition
$[L_1, L_2]$ is locally-restrictive if there exists a constant c such that, if Γ is a finite G-locally-transitive graph with (Γ, G) locally $[L_1, L_2]$ and $\{u, v\}$ is an edge of Γ, then $|G_{uv}| \leq c$.

(Trivial) Example: if L_1 and L_2 are regular then $[L_1, L_2]$ is locally-restrictive.

(Non-trivial) Example: Goldschmidt's result implies that $[Z_3, Z_3]$, $[Z_3, Sym(3)]$ and $[Sym(3), Sym(3)]$ are locally-restrictive.
Local action

Definition
Let L_1 and L_2 be finite transitive permutation groups and let Γ be a G-locally-transitive graph. We say that (Γ, G) is locally $[L_1, L_2]$ if, for some edge $\{u, v\}$ of Γ, we have permutation isomorphisms $G_{\Gamma(u)} \cong L_1$ and $G_{\Gamma(v)} \cong L_2$.

Definition
$[L_1, L_2]$ is locally-restrictive if there exists a constant c such that, if Γ is a finite G-locally-transitive graph with (Γ, G) locally $[L_1, L_2]$ and $\{u, v\}$ is an edge of Γ, then $|G_{uv}| \leq c$.

(Trivial) Example: if L_1 and L_2 are regular then $[L_1, L_2]$ is locally-restrictive.
Local action

Definition
Let L_1 and L_2 be finite transitive permutation groups and let Γ be a G-locally-transitive graph. We say that (Γ, G) is **locally $[L_1, L_2]$** if, for some edge $\{u, v\}$ of Γ, we have permutation isomorphisms $G_u^{\Gamma(u)} \cong L_1$ and $G_v^{\Gamma(v)} \cong L_2$.

Definition
$[L_1, L_2]$ is **locally-restrictive** if there exists a constant c such that, if Γ is a finite G-locally-transitive graph with (Γ, G) locally $[L_1, L_2]$ and $\{u, v\}$ is an edge of Γ, then $|G_{uv}| \leq c$.

(Trivial) Example: if L_1 and L_2 are regular then $[L_1, L_2]$ is locally-restrictive.

(Non-trivial) Example: Goldschmidt’s result implies that $[\mathbb{Z}_3, \mathbb{Z}_3]$, $[\mathbb{Z}_3, \text{Sym}(3)]$ and $[\text{Sym}(3), \text{Sym}(3)]$ are locally-restrictive.
The Goldschmidt-Sims Conjecture and the main problem

Conjecture

If L_1 and L_2 are finite primitive permutation groups then $[L_1, L_2]$ is locally-restrictive.
The Goldschmidt-Sims Conjecture and the main problem

Conjecture
If L_1 and L_2 are finite primitive permutation groups then $[L_1, L_2]$ is locally-restrictive.

Problem
When is $[L_1, L_2]$ locally-restrictive?
Rank two amalgams

1. A rank two amalgam is an amalgamated free product $P_1 *_B P_2$.
1. A rank two amalgam is an amalgamated free product $P_1 *_B P_2$.

2. B is called the Borel subgroup of the amalgam.
1. A rank two amalgam is an amalgamated free product $P_1 *_B P_2$.
2. B is called the Borel subgroup of the amalgam.
3. The amalgam is faithful if there is no nontrivial subgroup of B that is normalised by both P_1 and P_2.
Rank two amalgams

1. A rank two amalgam is an amalgamated free product $P_1 \ast_B P_2$.
2. B is called the Borel subgroup of the amalgam.
3. The amalgam is faithful if there is no nontrivial subgroup of B that is normalised by both P_1 and P_2.
4. The permutation type of the amalgam is $[L_1, L_2]$ where L_i is the permutation group induced by P_i in its action on the right cosets of B in P_i.
Equivalent formulations of the problem

Lemma

Let L_1 and L_2 be finite transitive permutation groups. The following are equivalent:

1. $[L_1, L_2]$ is not locally-restrictive.
Lemma

Let L_1 and L_2 be finite transitive permutation groups. The following are equivalent:

1. $[L_1, L_2]$ is not locally-restrictive.

2. For every integer c, there exists a rank two faithful amalgam of permutation type $[L_1, L_2]$ with Borel subgroup of order at least c.

Proof. A bit of Basse-Serre theory + a few tricks.
Lemma

Let L_1 and L_2 be finite transitive permutation groups. The following are equivalent:

1. $[L_1, L_2]$ is not locally-restrictive.
2. For every integer c, there exists a rank two faithful amalgam of permutation type $[L_1, L_2]$ with Borel subgroup of order at least c.
3. For every integer c, there exists a locally $[L_1, L_2]$ pair (\mathcal{T}, G) such that \mathcal{T} is an infinite tree and $c \leq |G_{uv}| < \infty$ for some edge $\{u, v\}$ of \mathcal{T}.

Proof. A bit of Basse-Serre theory + a few tricks.
Equivalent formulations of the problem

Lemma
Let L_1 and L_2 be finite transitive permutation groups. The following are equivalent:

1. $[L_1, L_2]$ is not locally-restrictive.

2. For every integer c, there exists a rank two faithful amalgam of permutation type $[L_1, L_2]$ with Borel subgroup of order at least c.

3. For every integer c, there exists a locally $[L_1, L_2]$ pair (\mathcal{T}, G) such that \mathcal{T} is an infinite tree and $c \leq |G_{uv}| < \infty$ for some edge $\{u, v\}$ of \mathcal{T}.

Proof.
A bit of Basse-Serre theory + a few tricks.
A permutation group is called **semiregular** if the identity is the only element of the group that fixes a point and **semiprimitive** if each of its normal subgroups is either transitive or semiregular.
Semiprimitive groups

A permutation group is called **semiregular** if the identity is the only element of the group that fixes a point and **semiprimitive** if each of its normal subgroups is either transitive or semiregular.

Examples:

1. Regular groups
2. Primitive and quasiprimitive groups
3. Frobenius groups
4. $\text{GL}(V)$ acting on the non-zero elements of V
5. $(V \oplus \cdots \oplus V) \rtimes \text{GL}(V)$
Our main theorem

Theorem (Morgan, Spiga, V.)

Let L_1 and L_2 be finite transitive permutation groups. If one of L_1 or L_2 is not semiprimitive then $[L_1, L_2]$ is not locally-restrictive.
Our main theorem

Theorem (Morgan, Spiga, V.)

Let L_1 and L_2 be finite transitive permutation groups. If one of L_1 or L_2 is not semiprimitive then $[L_1, L_2]$ is not locally-restrictive.

Proof.

Construct amalgams.
Our main theorem

Theorem (Morgan, Spiga, V.)

Let L_1 and L_2 be finite transitive permutation groups. If one of L_1 or L_2 is not semiprimitive then $[L_1, L_2]$ is not locally-restrictive.

Proof.

Construct amalgams.

Thus, the general problem is reduced to the case when both L_1 and L_2 are semiprimitive.
Our main theorem

Theorem (Morgan, Spiga, V.)

Let L_1 and L_2 be finite transitive permutation groups. If one of L_1 or L_2 is not semiprimitive then $[L_1, L_2]$ is not locally-restrictive.

Proof.
Construct amalgams.

Thus, the general problem is reduced to the case when both L_1 and L_2 are semiprimitive.

Conjecture (Morgan, Spiga, V.)

Let L_1 and L_2 be finite transitive permutation groups. Then $[L_1, L_2]$ is locally-restrictive if and only if both L_1 and L_2 are semiprimitive.
Let $k \geq 2$. A rank k amalgam \mathcal{A} is a set of k finite groups P_1, \ldots, P_k, such that $\bigcap_{i=1}^{k} P_i \neq \emptyset$ and, for every $i, j \in \{1, \ldots, k\}$ the group operations defined on P_i and P_j coincide when restricted to $P_i \cap P_j$.

Amalgams of higher rank

Let $k \geq 2$. A rank k amalgam \mathcal{A} is a set of k finite groups P_1, \ldots, P_k, such that $\bigcap_{i=1}^{k} P_i \neq \emptyset$ and, for every $i, j \in \{1, \ldots, k\}$ the group operations defined on P_i and P_j coincide when restricted to $P_i \cap P_j$.

1. $\bigcap_{i=1}^{k} P_i$ is called the Borel subgroup of \mathcal{A} and is denoted $\mathcal{B}(\mathcal{A})$.
Amalgams of higher rank

Let $k \geq 2$. A rank k amalgam \mathcal{A} is a set of k finite groups P_1, \ldots, P_k, such that $\bigcap_{i=1}^{k} P_i \neq \emptyset$ and, for every $i, j \in \{1, \ldots, k\}$ the group operations defined on P_i and P_j coincide when restricted to $P_i \cap P_j$.

1. $\bigcap_{i=1}^{k} P_i$ is called the Borel subgroup of \mathcal{A} and is denoted $B(\mathcal{A})$.

2. \mathcal{A} is faithful if there is no nontrivial subgroup of $B(\mathcal{A})$ that is normalised by each of P_1, \ldots, P_k.
Amalgams of higher rank

Let $k \geq 2$. A rank k amalgam \mathcal{A} is a set of k finite groups P_1, \ldots, P_k, such that $\bigcap_{i=1}^{k} P_i \neq \emptyset$ and, for every $i, j \in \{1, \ldots, k\}$ the group operations defined on P_i and P_j coincide when restricted to $P_i \cap P_j$.

1. $\bigcap_{i=1}^{k} P_i$ is called the Borel subgroup of \mathcal{A} and is denoted $B(\mathcal{A})$.

2. \mathcal{A} is faithful if there is no nontrivial subgroup of $B(\mathcal{A})$ that is normalised by each of P_1, \ldots, P_k.

3. The permutation type of \mathcal{A} is $[L_1, \ldots, L_k]$ where L_i is the permutation group induced by P_i in its action on the right cosets of $B(\mathcal{A})$ in P_i.
Amalgams of higher rank II

Theorem (Morgan, Spiga, V.)

Let \(k \geq 3 \) and let \(L_1, \ldots, L_k \) be nontrivial finite transitive permutation groups. The following are equivalent:

1. One of \(L_1, \ldots, L_k \) is not regular.

2. For every integer \(c \), there exists a rank \(k \) faithful amalgam of permutation type \([L_1, \ldots, L_k]\) with Borel subgroup of order at least \(c \).
Let $k \geq 3$ and let L_1, \ldots, L_k be nontrivial finite transitive permutation groups. The following are equivalent:

1. One of L_1, \ldots, L_k is not regular.

2. For every integer c, there exists a rank k faithful amalgam of permutation type $[L_1, \ldots, L_k]$ with Borel subgroup of order at least c.

This is surprisingly different from the $k = 2$ case!
The end.

Thank you!