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The question

Given a closed surface immersed in 3-space, what sort of symmetry
can it have under a finite group G of orientation-preserving
euclidean isometries?

The possibilities for G are the platonic solids groups (A4,S4,A5) ,
the prism groups Dn, and their subgroups.
Here we restrict our attention to general position immersions
f : S → E 3, where every point of S has a disk neighborhood D
such that f |D is a homeomorphism onto its image and these disks
meet the way two or three coordinate planes do in R3.

We will talk briefly about more general immersions later.
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History

The question has been considered for embedded surfaces by Rüedy
(1971, rotation), TT (Field’s Notes to appear, all
orientation-preserving), Ko(1993 for bordered surfaces), Costa
(1997 anticonformal and 2011 dihedral), Lin (1979, dihedral).

Only TT does platonic groups. No one does immersed (so all
orientable, except bordered).
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An eye-opener

Take a figure-eight curve in the yz-plane and rotate it around the
z-axis, but with a half twist.

The result is an immersed klein bottle.

Give it 7 half-twists. Now invariant under a 7-fold rotation around
z-axis.
Give it 6 twists. Now it is a torus, invariant under 6-fold rotation,
with quotient surface the klein bottle!!!
So an orientation-preserving action in 3-space can induce an
orientation-reversing action on an immersed orientable surface.

WHAT??????!
Remember that a 3-page book containts a möbius strip so a
figure-eight torus does too.
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The Riemann-Hurwitz equation

Given pseudo-free (fixed points isolated) action of G on the surface
S with quotient surface S/G = T :

RH: χ(S) = |G |(χ(T )− Σ(1− 1/ri )

where branch point i in T has order ri .

The equation RH does not classify actions of G on the surface S ,
but it is a first step.
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Rotational symmetry

The question is this

Write down the Riemann-Hurwitz equation for the action of G on
the surface S , induced from the immersion.
(Observation: action of G on E 3 leaving immersed f (S) invariant
induces pseudo-free action of G on S).
Then find which RH-equations are realizable with an immersion of
S in E 3.

Restrictions:
I. Branch order is same for all branch points on a rotation axis
II. There are an even number of branch points ( axis of rotation
left fixed and f (S) is a homology 2-cycle)

For n-fold rotational symmetry we get:

RRH : χ(S) = nχ(T )− b(n − 1)

where b is even.
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What you need to know about nonorientable surfaces

Even χ(T ) GOOD, odd χ(T ) BAD!

For example, no even order group acts pseudo-freely on T when
χ(T ) is odd.

For nonorientable T , the elements of π(T ) that preserve
orientation form a subgroup πo(T ) of index two in the
fundamental group π(T ).

For even χ(T ) = −n − 2, we have
π(T ) = 〈x1, y1, · · · xn, yn,w , z : Π[xi , yi ]zwz

−1w = 1〉
where πo(T ) = 〈x1, y1, · · · xn, yn,w , z2〉.

For odd χ(T ) = −n − 1, we have
π(T ) = 〈x1, y1, · · · xn, yn, z : Π[xi , yi ]z

2 = 1〉
where πo(T ) = 〈x1, y1, · · · xn, yn〉.
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Plan of attack: orbifolds

Look at orbifold (E 3/G ,Y ) of action of rotation group Cn on
(E 3,X ) with axis X .

Orbifold: quotient obtained by identifying all points in an orbit.

Then take immersion q : T → E 3/G with desired χ(T ) and q(T )
meeting Y in b points and let f : S → E 3 be the lift.

Two conditions:
1) For S to be connected, we want the composition
φ : π(T − B)→ π(E 3/G − Y )→ G to be surjective.
2) If T is nonorientable, we need φ(πo(T − B) to have index 2 in
G or not, depending on whether S is orientable or not.
medskip

Notice that any structure you have on T lifts to S (e.g polyhedral,
Riemann surface, smooth), even the nature of the singularities.
This is so much better than building models.
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Theorem for rotation with branching

There are three cases: S ,T both orientable (OO), both
nonorientable (NN), S orientable but T not (ON).

Theorem If b 6= 0, then RRH always realizable for OO and NN;
never realizable for ON. Moreover, for OO can be an embedding.

Proof For OO just embed T meeting Y in b points. For NN, just
add crosscaps (Boy surfaces) to T .
ON impossible since q∗(π

o(T − B)) generates π(E 3 − Y ).
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Theorem for rotation with no branching

Theorem Suppose b = 0 (necessarily χ(T ) ≤ 0).
(OO): RRH always realizable and S embedded.

(NN): RRH always realizable except when χ(T ) = 0 and n is even.
(ON): RRH realizable except when χ(T ) is odd (n must be even).

Proof For OO just begin with torus running once around Y . Add
handles as needed.
For NN, when χ(T ) < 0, add crosscaps to torus. For χ(T ) = 0
and odd n, use Figure-eight klein bottleWhen n even, we have
π(T ) = 〈y , z : zyz−1y = 1〉, where y is orientation-preserving and
z not. Since π(T − X ) = Z has no torsion, q∗(y) = 0. Thus φ(z)
generates Cn and since n is even, φ(πo(T )) = φ(〈z2〉) has index 2
in G , making S orientable.
For ON and even χ(T ), just add orientable handles as needed to
Figure-eight klein bottle.For odd χ(T ), q∗(z

2) = 0 in infinite cyclic
π(E 3/G − Y ), so q∗(z) = 0, making S nonorienatble.
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Platonic groups, no triple points on axis

Now we have:
Prism, G = Dn, rotation axes (2, n, 2)

Tetrahedron, G = A4, rotation axes (2, 3, 3)
Cube/octahedron, G = S4, rotation axes (2, 3, 4)
Dodecahedron/icoasahedron, G = A5, rotation axes (2, 3, 5)

The Riemann-Hurwitz equations are:
PRH: χ(S) = 2nχ(T )− bn − 2c(n − 1)− dn
TRH: χ(S) = 12χ(T )− b6− c8− d8
CRH: χ(S) = 24χ(T )− b12− c16− d18
DRH: χ(S) = 60χ(T )− b30− c40− d48

In each case, b, c , d have the same parity (to be explained).
Since A4 and A5 have no index two subgroup, ON is possible only
for PRH and CRH.
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The orbifold for the platonic groups

In the orbifold E 3/G the set of X of rotation axes gets taken to a
set Y of 3 rays from the origin.

For all but the tetrahedron and odd order prisms, there is antipodal
symmetry so each axis gets bent in half.
For the tetrahedron, in E 3/G , there is one whole 3-fold axes and
one half 2-fold axes.
For the prism, there are two half 2-fold axes when n is even, and
one full 2-fold axis for odd n (think of Dn action on an n-cycle).

Notice that now, either the origin is inside q(T ) (as homology
2-cycle) or outside.
Thus number of branch points of each type have same parity (odd
if origin inside, even if origin outside).
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Theorem for at least two kinds of branching

Theorem. Suppose that at least two of b, c , d are nonzero. Then
for OO and NN, each of PRH-DRH is realizable, and S embedded
for OO. For ON, none are realizable.

Proof Start with sphere intersecting axes correct number of times.
Then add orientable handles for OO or crosscaps for NN.
For ON, we have π(E 3 − Y ) is free of rank two and generated by
little loops on q(T ) around axes, which are necessarily orientable,
so q∗(π

o(T )) generates π(E 3/G − Y ) so φ(πo(T )) not index two.



Theorem for at least two kinds of branching

Theorem. Suppose that at least two of b, c , d are nonzero. Then
for OO and NN, each of PRH-DRH is realizable, and S embedded
for OO. For ON, none are realizable.

Proof Start with sphere intersecting axes correct number of times.
Then add orientable handles for OO or crosscaps for NN.

For ON, we have π(E 3 − Y ) is free of rank two and generated by
little loops on q(T ) around axes, which are necessarily orientable,
so q∗(π

o(T )) generates π(E 3/G − Y ) so φ(πo(T )) not index two.



Theorem for at least two kinds of branching

Theorem. Suppose that at least two of b, c , d are nonzero. Then
for OO and NN, each of PRH-DRH is realizable, and S embedded
for OO. For ON, none are realizable.

Proof Start with sphere intersecting axes correct number of times.
Then add orientable handles for OO or crosscaps for NN.
For ON, we have π(E 3 − Y ) is free of rank two and generated by
little loops on q(T ) around axes, which are necessarily orientable,
so q∗(π

o(T )) generates π(E 3/G − Y ) so φ(πo(T )) not index two.



Theorem with no branching

When there is no branching, clearly we need χ(T ) ≤ 0. But if
χ(T ) = 0, then since π(E 3/G −Y ) is free and π(T ) is 2-generator
not free, q∗(T ) is infinite cyclic, so φ cannot be onto (as G is
2-generator).

Theorem Suppose that b = c = d = 0 (necessarily, χ(T ) < 0).
For OO, all realizable with S embedded.
For NN, all realizable, except when χ(T ) = −1 or, for PRH, when
χ(T ) = −2 and n is even.
For ON, both PH and CH are realizable only when χ(T ) is even.

Some work in NN to show exceptions impossible. Need π(E 3 − Y )
is free and look carefully at presentations of π(T ).
For ON, the real point is that for odd χ(T ), there will always be a
orientation-reversing element z with q∗(z) = 1.
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Only one kind of branching

Everything OK for χ(T ) ≤ 0, but for χ(T ) = 1, 2 trouble if
number of branch points at least 4 (necessarily even since). See
example.



Generalizations

First, try allowing triple points on 3-fold axis for TRH, CRH, DRH.
This means the 3-fold coefficient can now have different parity
from other coefficients.

Allow more general immersions. In particular, if you allow image of
disks to be tangent to each other, then can have different orders of
branching at points of intersection with same axis.

Look at actions with reflections. Now orbifold has boundary.

But look out. Maybe “immersion” of S into E 3 is just a covering
of S onto an embedded surface S ′ in E 3. Now you are asking
whether, say, cyclic action on S ′ lifts to S .
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This means the 3-fold coefficient can now have different parity
from other coefficients.

Allow more general immersions. In particular, if you allow image of
disks to be tangent to each other, then can have different orders of
branching at points of intersection with same axis.

Look at actions with reflections. Now orbifold has boundary.

But look out. Maybe “immersion” of S into E 3 is just a covering
of S onto an embedded surface S ′ in E 3. Now you are asking
whether, say, cyclic action on S ′ lifts to S .


